Physiology (ISSN 1548-9213, formerly 0886-1714; ESSN 1548-9221, formerly 1522-161X) is published bimonthly (one volume per year) by the International Union of Physiological Sciences and the American Physiological Society. Copyright © 2004 by the International Union of Physiological Sciences and the American Physiological Society. Printed in the United States of America. The code at the bottom of the first page of an article indicates copyright owner's consent that copies may be made beyond that permitted by sections 107 and 108 of the U.S. Copyright Law—unless the copies are for general distribution, advertising, creating new works, or resale—provided the per-copy fee is paid through the Copyright Clearance Center, Inc., 222 Rosewood Dr., Danvers, MA 01923. 1548-9213/04 $5.00. Change of Address: The journal must be advised of a change of address at least 6 weeks before date of issue, with both the subscriber's new and old addresses given. Undelivered copies resulting from an address change will not be replaced. Editorial Inquiries: Walter F. Boron, Editor-in-Chief, Physiology, c/o Charleen Bertoloni, Department of Cellular and Molecular Physiology, School of Medicine, 333 Cedar St., P. O. Box 208026, New Haven, CT 06520-8026. Subscription and Advertising Inquiries: Physiology, The American Physiological Society, 9650 Rockville Pike, Bethesda, MD 20814-3991.

Emerging Topics
Karl Kunzelmann and Brendan McMorrin
First Encounter: How Pathogens Compromise Epithelial Transport
Multiple intracellular signaling pathways are activated by membrane binding of pathogens or by their toxins, which changes electrolyte transport in epithelial cells.

Reviews

Deciphering the Renal Code: Advances in Conditional Gene Targeting
Alexander Cavelli and Susan E. Quaggini
The advantages and pitfalls of gene-targeting systems are discussed.

A Hypothesis About the Role of Adult Neurogenesis in Hippocampal Function
Alejandro E. Schinder and Fred H. Gage
Key findings on adult neurogenesis are discussed in the context of a novel hypothesis proposing how new neurons may contribute to hippocampal function.

The Architecture of the Active Zone in the Presynaptic Nerve Terminal
R. Grace Zhai and Hugo J. Bellen
Active zones of presynaptic terminals vary in size and shape but are organized according to similar principles, revealing an underlying pattern in their design.

Why Calcium-Stimulated Adenylyl Cyclases? Gregory D. Ferguson and Daniel R. Storm
The Ca2+-activated adenylyl cyclases, AC1 and AC8, play a critical role in some forms of synaptic plasticity and in long-term memory formation.

Connexins: Gaps in Our Knowledge of Vascular Function
Xavier E. Figueroa, Brant E. Isakson, and Brian R. Duling
Gap junctions provide key signaling pathways in the vasculature.

Voltage-Gated Potassium Channels in Cell Proliferation
Luis A. Pardo
K+ channels are important in both physiological and pathological cell proliferation and open a promising pathway for novel targeted therapies.

A Two-Holed Story: Structural Secrets About ClC Proteins Become Unraveled?
Elena Babini and Michael Pusch
Recent results obtained on the X-ray structure and functional properties of the prokaryotic ClC-ec1 protein are discussed.

Moving Forward: Mechanisms of Chemoattractant Gradient Sensing
Jonathan Franca-Koh andland Peter N. Devreotes
How is a cell's sense of direction linked to movement and polarization?

The Nuclear Envelope and Human Disease
Antoine Muchir and Howard J. Worman
Discoveries that mutations in nuclear envelope protein cause human diseases are changing our view of this organelle.

The Nuclear Envelope and Human Disease
Antoine Muchir and Howard J. Worman
Discoveries that mutations in nuclear envelope protein cause human diseases are changing our view of this organelle.

The Nuclear Envelope and Human Disease
Antoine Muchir and Howard J. Worman
Discoveries that mutations in nuclear envelope protein cause human diseases are changing our view of this organelle.

The Nuclear Envelope and Human Disease
Antoine Muchir and Howard J. Worman
Discoveries that mutations in nuclear envelope protein cause human diseases are changing our view of this organelle.

The Nuclear Envelope and Human Disease
Antoine Muchir and Howard J. Worman
Discoveries that mutations in nuclear envelope protein cause human diseases are changing our view of this organelle.

The Nuclear Envelope and Human Disease
Antoine Muchir and Howard J. Worman
Discoveries that mutations in nuclear envelope protein cause human diseases are changing our view of this organelle.

On the cover: The structure of CIC-ec1. See Babini and Pusch, pp 293, this issue.