




cell model (22). Again, intracellular cAMP and extra-
cellular cAMP had opposing actions on PGHS-2
expression, causing upregulation and downregulation
of the enzyme, respectively. 

Paracrine Action of cAMP on the
Renal System: The Extracellular
cAMP-Adenosine Pathway

The hormone glucagon, which is released from the
pancreas directly into the portal blood flow, causes
intracellular cAMP signaling in hepatocytes, and, as
suggested above, this leads to substantial efflux of
cAMP into the general circulation. It appears that an
important target of this circulating cAMP is the renal
system, particularly the proximal tubule. Glucagon is
well known to cause a marked enhancement of renal
sodium and phosphate excretion in vivo, although
specific receptors for glucagon have never been iden-
tified in the kidney. This prompted Bankir and 
colleagues (5) and others to propose that cAMP
released from the liver might be acting as a 
circulating factor mediating the renal actions of
glucagon. A sequence of studies by Ahloulay et al.
showed that cAMP infusion alone reproduced the
actions of glucagon on renal Na+ and PO4

–2 handling
(2). This phenomenon has been named the 
“pancreato-hepatorenal cascade.” 

A comprehensive series of animal experiments car-
ried out by Jackson and coworkers (36, 37) have given
a further twist on this general theme. These investiga-
tors showed that the cAMP entering the general 
circulation from the liver is able to undergo enzymatic
conversion to adenosine once it reaches the kidney 
(FIGURE 1). Adenosine has a short half-life in the cir-
culation (~1 s); therefore, cAMP (which is stable in
plasma) may be regarded as a sort of prohormone for
adenosine. Once produced (either locally or at a dis-
tant site), adenosine can activate one of four different
receptor subtypes (A1, A2A, A2B, and A3). Complex sce-
narios can be envisioned considering that adenosine
receptor subtypes A1 and A3 interact with G�i/G�o to
reduce intracellular cAMP levels in target cells, where-
as the A2A and A2B subtypes serve to increase cAMP via
G�s. Therefore, cAMP released from one cell type could
conceivably initiate cAMP signaling in a neighboring
cell or suppress cAMP signaling depending on the par-
ticular adenosine receptor subtype expression pattern. 

As described above, the cAMP-adenosine pathway
is prominent in the kidney, but substantial evidence
for this phenomenon also exists in the central nervous
system (11, 21, 38). Moreover, the cAMP-adenosine
pathway has been speculated to be important in the
cardiovascular system and also for systemic metabolic
homeostasis (57). The presence of the pathway does
not preclude the possibility that cAMP may exert
direct actions on cells in addition to indirect effects via
adenosine production. 
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systems, including renal, hepatic, and central nervous
system. This subject has recently been reviewed in depth
by Bankir et al. (5) and Jackson and Raghvendra Dubey
(38). As described below, some of these actions may be
the indirect result of the metabolism of cAMP to adeno-
sine in the extracellular space (the “extracellular cAMP-
adenosine pathway”), although some effects appear to
be direct. For example, Sorbera and Morad (55) showed
in 1991 that 50 �M extracellular cAMP rapidly (~50 ms)
inhibited a sodium current in ventricular myocytes
derived from several vertebrate species. This effect was
sensitive to pertussis toxin, suggesting a GPCR-based
mechanism dependent on G�i or G�o proteins (55). As
another example, secreted cAMP (but not adenosine)
derived from stimulated human CD4+ T lymphocytes
was recently shown to exert significant growth effects on
neighboring T cells in a co-culture system (67). 

Detrick and colleagues demonstrated that nanomo-
lar concentrations of extracellular cAMP and cGMP
(but not adenosine or guanosine) enhanced colony
formation in myeloid progenitor cells. Interestingly,
membrane permeant forms of the cyclic nucleotides
used at high micromolar concentrations had the
opposite effect on the proliferation of the cells, imply-
ing that an intracellular elevation of cAMP or cGMP
could antagonize the action of extracellular second
messenger (20). Elalamy and colleagues have provid-
ed compelling evidence for the involvement of an
ecto-PKA (protein kinase A) in mediating the actions
of extracellular cAMP (used at a concentration of 5
�M) on expression of prostaglandin H synthase
(PGHS-2) in a pulmonary microvascular endothelial

REVIEWS

FIGURE 2. Blockade of cAMP extrusion with probenecid alters
intracellular free [cAMP] 
Intracellular cAMP was imaged using a FRET-based biosensor (46) in sin-
gle HEK293 cells as described previously (25). This sensor (courtesy of Dr.
Kees Jalink) is based on the cAMP binding protein Epac, which has been
labeled with CFP and YFP. cAMP-dependent conformational changes of
the Epac protein result in changes in FRET, providing a measure of free
[cAMP]. Acute treatment of cells with 1 mM probenecid caused a small
but significant change in the resting FRET signal (the 480:535 nm emis-
sion ratio), consistent with an increase in intracellular [cAMP]. These data
suggest that the cAMP export process can contribute to intracellular
cAMP homeostasis, in addition to mediating the elevation in extracellular
cAMP. Shown for comparison is the action of the direct adenylyl cyclase
activator forskolin (50 �M). 
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Extracellular Calcium as a Third
Messenger

Just as it has long been known that intracellular cAMP
signaling events are associated with extracellular
accumulation of the second messenger, so has it been
long appreciated that Ca2+ can fluctuate outside cells,
owing to activation of influx and efflux pathways for
the cation during Ca2+ signaling events (41). As with
cAMP, early measurements of hormone-stimulated
Ca2+ signals frequently relied on determinations of
Ca2+ in the external media. Because diffusion is great-
ly limited in the interstitial spaces (which occupy only
a fraction of the tissue volume; e.g., ~20% in brain 
tissue) (66) and the buffering capacity for Ca2+ inside
the cell is so much greater than outside, these fluxes
can lead to significant alterations in free [Ca2+] in the
extracellular milieu. 

Fluctuations in Extracellular Ca2+

As indicated in FIGURE 3, agonist-stimulated Ca2+

signaling events involve 1) the release of Ca2+ from
internal storage compartments into the cytoplasm
via intracellular release channels (i.e., the InsP3

receptor); 2) the extrusion of Ca2+ into the extracellu-
lar space by plasma membrane Ca2+ ATPases (PMCA)
or other export mechanisms (e.g., Na+/Ca2+ exchang-
ers); and 3) the activation of Ca2+ entry through 
store-operated channels (SOCs), such as the recently 
identified Ca2+ release-activated pathways known as
the Orai proteins (47). 

Tepikin and colleagues have provided direct
demonstrations of the significant quantitative impact
of the Ca2+ extrusion process on extracellular Ca2+

levels adjacent to stimulated cells (61–63). One study
employed simultaneous real-time measurements of
intracellular and extracellular [Ca2+] in single pancre-
atic acinar cells suspended in a small droplet (40–90
times the volume of the cell; FIGURE 4). By measuring
the extracellular [Ca2+] in the droplet with a Ca2+-sen-
sitive dye, it was estimated that the total intracellular
calcium content was reduced by 0.7 mM during
cholinergic stimulation, owing to active transport of
the cation by the PMCA. 

Temporal and spatial separation of Ca2+ entry and
efflux across the plasma membrane can give rise to
physiologically significant excursions in extracellular
[Ca2+] (13, 35), particularly in polarized epithelial cells
and other functionally polarized cells such as neurons
(33). For example, Caroppo and colleagues showed
that [Ca2+] in the luminal micro-compartment of the
intact gastric gland increases by 200–500 �M following
cholinergic stimulation, owing to an abundance of
PMCA on the apical membrane of the gastric 
epithelial cells (13). At the same time, a comparable
depletion of Ca2+ was recorded in the basolateral inter-
stitium of the intact mucosa as a result of Ca2+ influx

via pathways located predominantly at the basal cell
side. As described below, these extracellular [Ca2+]
fluctuations have been shown to have functional con-
sequences. 

It is also well established that specific elements of the
Ca2+-handling machinery (as well as certain Ca2+ sen-
sors) can be confined in cell surface microdomains,
such as caveolae (17, 26), potentially giving rise to local
gradients of Ca2+ in the caveolar nanospaces. Other fac-
tors can influence free [Ca2+] in the external milieu,
including dilution and concentration of ionic species,
owing to cellular water transport. In addition, the
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FIGURE 3. “Third messenger” activity of extracellular Ca2+

Local extracellular [Ca2+] can fluctuate as a consequence of agonist-
induced intracellular Ca2+ signaling events. In the typical scenario, acti-
vation of a G�q/11-coupled receptor by a Ca2+-mobilizing agonist results
in inositol 1,4,5-trisphosphate (InsP3) production, giving rise to the lib-
eration of stored Ca2+ via InsP3 receptor release channels in intracellular
Ca2+ pools. A substantial fraction of Ca2+ released into the cytoplasm is
rapidly extruded by plasma membrane Ca2+ ATPases (PMCAs), poten-
tially resulting in significant local elevation of the extracellular [Ca2+].
Store emptying also triggers Ca2+ influx via store-operated Ca2+ chan-
nels (SOCs) in the plasma membrane, leading to transient depletion of
Ca2+ in the volume-limited interstitial spaces. The ensuing local fluctua-
tions in Ca2+ can influence a variety of Ca2+-sensing proteins on adja-
cent cells or on the same cell. Examples include HERG K+ channels,
several types of nonselective cation channels, and a host of G-protein-
coupled receptors modulated by extracellular Ca2+ (e.g., the extracellu-
lar Ca2+-sensing receptor, the GPRC6A orphan receptor, or
metabotropic glutamtate receptors). Gap-junction hemichannels and
the transmembrane protein notch are also susceptible to alterations in
extracellular [Ca2+] (32). 
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Extracellular Ca2+ Sensors

Although specific GPCRs for cAMP have not been
identified in mammalian cells, cell-surface receptors
for Ca2+ are known to exist, and some of these have
been well characterized. Without question, the best
known of these is the extracellular calcium-sensing
receptor (CaR), which was originally cloned from
bovine parathyroid gland in 1993 by Brown and col-
leagues (9). The structural and functional properties
of this widely expressed divalent cation receptor have
been reviewed extensively elsewhere (10, 33) and will
not be addressed in detail here. The CaR (of which
only a single isoform appears to exist) is indispensa-
ble for life in mammals, acting as the Ca2+ sensor that
controls systemic Ca2+ and Mg2+ homeostasis via PTH
secretion. An emerging literature describes numer-
ous physiological functions of this receptor through-
out the body and in diverse vertebrate species,
including birds and fish. Deletion of CaR is lethal, but
the developments of viable “rescued” CaR knockout
mouse models that maintain normal parathyroid
function are being used increasingly to examine this
receptor’s physiological role in other organ systems
(1, 45). 

CaR is a member of family C of the GPCR superfam-
ily, which also includes three taste receptors (T1–T3),
the GABAB receptors, eight metabotropic glutamate
receptors (mGluR1–mGluR8), and six orphan recep-
tors, including the recently characterized GPRC6A (7,
68). These receptors appear to share an evolutionary
thread with CaR based on their common functional
origins as nutrient/salinity sensors (15, 30). The CaR is
allosterically modulated by extracellular amino acids
(15). Conversely, other members of this family that are
regarded as amino acid sensors, such as certain
mGluRs, GABAB receptors, and GPRC6A, are modulat-
ed by extracellular Ca2+ (44). GPRC6A has 34% amino
acid sequence identity with CaR (68) and is activated
by relatively high extracellular [Ca2+] (5–10 mM) (44).
This receptor has been suggested to serve as a sensor
for Ca2+ in bone (44), a tissue where local extremes in
external [Ca2+] are believed to occur during the bone
remodeling process. 

Many other cell surface proteins are susceptible to
physiological fluctuations in external [Ca2+] (recently
reviewed in Ref. 32). These include gap-junction
hemichannels (64), which can open in response to a
modest (~200 �M) decrease in external [Ca2+], and the
receptor Notch, which may sense external [Ca2+] to
drive the establishment of right-left symmetry during
embryogenesis (50, 51). A distinct Ca2+-sensing recep-
tor known as CAS has been recently described in
plants (59). In addition, a number of ion channels alter
their open probability depending on the local extracel-
lular Ca2+, including the proton-gated cation channels
ASIC1a/ASIC1b, HERG K+ channels, and other nonse-
lective channels found in neuronal tissue (32). 
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transport of Ca2+ buffers (e.g., HCO3–, PO4
2–) would also

be expected to influence the free [Ca2+] in the intersti-
tium. Ca2+ taken up into endocytic vesicles could con-
ceivably impact the local extracellular [Ca2+] (23).
Finally, secretory vesicles are known to contain high
concentrations of Ca2+ and other divalent cations (Zn2+,
Mg2+), and synchronous secretory  activity could in
principle lead to rapid increases in extracellular diva-
lents (29, 48). Gray et al. recently proposed that libera-
tion of these metals from vesicles of insulin-secreting
cells may constitute a means of communication
between cells (29) via sensors for extracellular Ca2+, as
described in the following section. 

REVIEWS

FIGURE 4. Extracellular [Ca2+] becomes elevated adjacent to
stimulated cells due to Ca2+ export
Direct measurements of Ca2+ extrusion from pancreatic acinar cells per-
formed by Tepikin and colleagues (62) using the “droplet technique”
demonstrates that large quantities of Ca2+ are exported from stimulated
cells. The total drop in cellular Ca2+ following acetylcholine (ACh) treat-
ment was estimated to be about 0.7 mM over 2–5 min (modified with
permission from Ref. 62). A: photomicrograph of fluid micro-droplet con-
taining a single mouse pancreatic acinar cell. The cell was loaded with the
Ca2+ indicator fura-2, whereas the droplet contained a second Ca2+ dye,
fluo-3. At right is seen the pipette tip, used for iontophoretic delivery of
agonists. B: simultaneous measurement of free intracellular Ca2+ concen-
tration ([Ca2+]i) in a single acinar cell and extracellular Ca2+ ([Ca2+]o) in the
droplet following challenge with 20 nM ACh. 
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Intercellular Communication 
Via Ca2+

Our laboratory demonstrated some years ago in a
proof-of-concept study using a co-culture model sys-
tem that it is possible for CaR to detect extracellular
fluctuations in [Ca2+] that occur secondary to intracel-
lular Ca2+ signaling events (34, 65). This opened up the
prospect that Ca2+ might function as a paracrine 
messenger, used, for example, to communicate infor-
mation about the signaling status of a neighboring cell
or to integrate or reinforce signals in multicellular
ensembles. We further provided evidence for a varia-
tion on this theme, whereby exported Ca2+ can activate
CaR expressed on the same cell in an autocrine fash-
ion (19). Caroppo et al. (13) later showed a physiolog-
ical role of this third messenger signaling system in the
intact gastric mucosa. These investigators took advan-
tage of information gained from their previous extra-
cellular microelectrode studies aimed at measuring
the profile of the extracellular Ca2+ “signal” in the 
apical and basolateral microdomains following
cholinergic stimulation (see above) (13). Remarkably,
reproducing this physiological pattern of extracellular
[Ca2+] variation was able to elicit changes in pepsino-
gen and alkaline secretion from the tissue (14), and
more recently this third messenger activity has been
linked to changes in water transport (24) in the same
model system. The CaR, which is expressed apically in
the amphibian oxyntic cell, is involved in detecting the
extracellular [Ca2+] elevation that occurs in the lumi-
nal compartment of the gastric gland, although it
appears that another entity may be responsible for
sensing the basolateral decrease in [Ca2+] (14). These
intriguing data are suggestive of a novel mode of Ca2+

signaling that takes advantage of extracellular, rather
than intracellular, changes in [Ca2+], but it remains to
be seen whether this process occurs in other tissues. 

Other Second Messengers as “Third
Messengers”?

Are there other hydrophilic signaling molecules that
are exported by cells to inform neighboring cells of
their signaling or metabolic status? Cyclic GMP, the
second messenger generated by either atrial natri-
uretic peptide or nitric oxide gas via guanylate
cyclases, is vigorously exported from many cell types
in quantities that surpass that of cAMP (4, 54). This
widespread phenomenon is mediated by many of the
same MRP family members (e.g., MRP4, MRP5,
MRP8) known to transport cAMP, as well as the
organic anion transporter OAT1 (69). Diverse biologi-
cal actions of extracellular cGMP have been described
in brain and kidney [recently reviewed by Sager (54)],
but as is the case for extracellular cAMP, specific
molecular receptors for cGMP in mammalian cells
have yet to be identified. 

Isolated reports of extracellular accumulation of
inositol 1,4,5 trisphosphate (InsP3) following choliner-
gic stimulation as measured using microdialysis tech-
niques in brain have also appeared (40, 52). Roberts et
al. found that several inositol phosphate metabolites
of InsP3 appeared (in addition to InsP3) in the intersti-
tial space under these conditions, although it is uncer-
tain whether the appearance of the additional inositol
derivatives reflects metabolism of extracellular InsP3

or a separate transport process (52). It is not known
whether InsP3 egress is a widespread phenomenon or
whether it has any functional significance. 

Conclusions

Second messengers are the cellular currency of infor-
mation transfer. However, the generation of cAMP from
ATP and the energy required to maintain the gradients
that permit Ca2+ signaling to take place come at a cer-
tain energetic cost. Thus it is attractive to imagine that
multicellular organisms might capitalize on fluctua-
tions in extracellular second messengers to expand the
informational content of the intracellular signal trans-
duction process. The concept of the interstitial
microdomain as a specialized signaling compartment
is in its infancy, however. There is still much to learn
about how and when the local concentrations of cAMP
and Ca2+ change in this space and what the physiologi-
cal consequences of these fluctuations are. The devel-
opment of practical methods for probing the profile of
such extracellular “signals” will be an important first
step to understanding whether this constitutes a gener-
alized device to extend the scope and range of second
messenger molecules to a domain outside the cell.  
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