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Hypoxia ha

such as O2 deprivation. Exposed brain slices depolar-
ized sooner and recovered more slowly than control
slices from acute in vitro hypoxia (142). It therefore
becomes important to delineate the paradigm of pre-
conditioning used and its applicability to specific cells
and tissues. 

Cell injury and apoptosis are not limited to brain
and heart in IH but occur also in the cerebral and
coronary arteries, which initiate and propagate further
cell death and remodeling in the lumen of these blood
vessels. It is often the remodeling of vessels that leads
to additional stress, and a vicious cycle sets in. It is
possible that oxidant stress and inflammatory media-
tors modulate the intermittent hypoxia-induced vas-
cular dysfunction (105, 171, 189). Vascular dysfunction
is central to our hypothesis that IH-induced alter-
ations can negatively affect aging. 

Stem cells and Notch signaling

In contrast to cell death that can occur during IH, there
seems to be an increase in neuronal replication in cer-
tain regions of the CNS. Neurogenesis continues
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proteins such as stress-inducible chaperones (hsp70).
The authors postulated that survival mechanisms are
initiated in the early stages of IH, as evidenced by the
increase in anti-apoptotic and metabolic proteins,
that are eventually overwhelmed by the continued
stress of IH that ultimately leads to peak apoptosis at
48 h of IH in the more vulnerable CA1 region of the
hippocampus (70). 

IH induces apoptosis in rat myocardium as shown
by increased TUNEL-positive cell number and cas-
pase 3 activity after 6 wk of IH (30). Animals subjected
to IH show increased infarct size after total global
ischemia/reperfusion in IH hearts compared with
those from normoxic or control hearts (101). Hence,
this study purports that rat hearts exposed to long-
term IH are more susceptible to ischemia, unlike the
idea of preconditioning (45, 215), indicating that the
paradigm used can affect the process leading to 
preconditioning. For example, studies from our labo-
ratory have demonstrated that previous exposure to
long-term moderate hypoxia renders neocortical
neurons more vulnerable to a subsequent acute stress

REVIEWS

FIGURE 3.P2 CD1 mice were exposed to various paradigms of hypoxia and hypercapnia for 10 days and brain cryosections
were stained with a cleaved caspase 3 antibody to detect apoptotic cells
Top: a negative control where the primary antibody was omitted. Magnification �40; zoom �2. Bottom: coronal sections from mice exposed to
combined chronic intermittent hypoxia/hypercapnia (CIH/CIC) showing DAPI in blue and cleaved caspase 3 in red and showing co-localization of
cleaved caspase 3 and damaged and morphologically deranged nuclei (arrows). Magnification �40; zoom �3. 
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throughout life in the mammalian brain, specifically
within the subventricular zone (SVZ) around the later-
al ventricles and in the subgranular zone of the den-
tate gyrus (5, 36, 53, 62, 68, 69, 93, 154). Even though
most neurogenesis occurs prenatally, neurogenesis
continues postnatally in the hippocampus (53) and
olfactory bulb (108, 124) and has recently been postu-
lated to occur in the cerebral cortex and spinal cord as
well (127, 206). It has been demonstrated that neuroge-
nesis also occurs in the adult brain and in the postnatal
neonate in response to injury (127, 182). Moreover, it
has been recently suggested that neurogenesis in the
CNS can occur in response to hypoxia-induced injury.
For example, severe hypoxia for a short period results
in apoptotic cell death in the CA1 region of P1 rat hip-
pocampus as assayed by Bcl-2, Bax, and caspase 3.
However, after a return to normoxia, rats demonstrated
significant recovery of neuronal numbers via neuroge-
nesis by P21 (36). In a corresponding experiment
where neonatal mice were subjected to sublethal
hypoxia (9.5–10.5% O2), Fagel et al. (55) also observed
neuronal cell loss that was restored after a return to
normoxia by increased proliferation of astrocytes,
oligodendrocytes and, importantly, neurons. A mecha-
nism by which this might occur could be the hypoxia-
induced upregulation of fibroblast growth factor (FGF)
signaling that promotes neocortical neurogenesis (63). 

Even though there are only a few published reports
on this topic, IH seems also to induce the proliferation
and differentiation of neural stem cells. In a study by
Zhu et al., it was reported that an intermittent hypoxia
paradigm of moderate hypoxia for 2 weeks led to
increased bromo-deoxyuridine (BrdU) incorporation
in the subventricular zone (SVZ) and dentate gyrus in
presumably young adult rats (214). Interestingly,
although the number of dividing cells returned to con-
trol levels in the SVZ after 4 wk posthypoxia, the num-
bers of dividing cells doubled in the DG, but these cells
apparently did not differentiate into neurons. The
authors therefore concluded that neural precursors in
the SVZ and DG respond differently to hypoxia, as has
been reported in the case of transient global ischemia
in the gerbil (188). In another study using IH, neuro-
genesis was found to rebound later after IH. Using
nestin and neurofilament markers, IH initially
induced a reduction in BrdU-positive cells at a few
days; however, this was followed by an increase in
BrdU-positive cell numbers after a few weeks (72). Of
note, cyclic-AMP response element binding protein
(CREB) is important for induction of neuronal replica-
tion and was also demonstrated to be decreased early
in response to IH but also reversed that trend and
increased. These events occurred without any demon-
strable changes in proteins involved in synaptogenesis
such as synaptophysin, syntaxin, 25K synaptosome-
associated protein (SNAP25), vesicle-associated
membrane protein (VAMP)/synaptobrevin, or debrin. 

Hypoxia has effects on cellular differentiation in

neuronal precursors that appear to be mediated by the
Notch signaling pathway. It has been recently shown
that HIF-1� binds to the Notch intracellular domain,
and this complex can bind to Notch-responsive 
promoters and activate Notch-dependent genes (83).
This phenomenon underlies the ability of stem cells to
remain in the undifferentiated state during normoxia
and to replicate and differentiate under hypoxic con-
ditions. However, neurogenesis is usually inadequate
and does not serve to totally replenish cells that have
been lost during injury. Therefore, cell loss in brain
and heart during IH may impact cellular function and
aid in the progression of aging. 

Gene transcription

Even though gene transcription is generally supposed
to be repressed during severe hypoxia (118), there are
certain genetic programs that are upregulated, espe-
cially the universal hypoxic regulator hypoxia
inducible factor 1 (HIF-1), which is central to the
response of tissues to hypoxia (195). HIFs are mem-
bers of the basic helix-loop-helix, Per/ARNT/Sim
(HLH-PAS) protein family and consist of three O2-reg-
ulated alpha chains (HIF-1�, -2�, and -3�) and a con-
stitutive �-chain [HIF-1�, aryl hydrocarbon receptor
nuclear translocator (ARNT)] (129, 161). HIF-1� was
first identified by Wang and Semenza (195), and the
HIF-1� homolog HIF-2�, originally termed endothe-
lial PAS protein 1 (EPAS-1), which shares similar func-
tional and regulatory features but has different roles,
was later described (201). 

HIF-1� is unstable under normoxic conditions due
to the action of prolyl hydroxylases (PHD1, 2, and 3),
which predispose to its ubiquitination by the E3 ligase
complex that includes the von Hippel-Lindau tumor
suppressor protein (pVHL) and degradation by the
proteosome (104). Under normoxic conditions, the
pVHL binds to the oxygen-dependent degradation
domain (ODD) in the carboxy terminus of HIF-1� and
hydroxylates prolines 402 and 564, which allow 
poly-ubiquitination of HIF-1�. Additionally, transac-
tivation of HIF-1 by p300 is prevented by another
hydroxylase, the asparaginyl hydroxylase or factor-
inihibiting HIF-1 (FIH-1), which represses activity of
HIF1 (21). These hydroxylases require molecular O2

as a substrate and oxyglutarate as a co-substrate as
well as iron (Fe2+) to hydroxylate these specific proline
residues. Therefore, in the absence of O2 or during
iron depletion as with desferroxamine, HIF-1� can no
longer be hydroxylated and degraded and now accu-
mulates within cells. Hypoxia leads to a widespread
accumulation of HIF-1� in virtually all tissues with
subsequent tissue-specific target gene activation
(185). HIF-1� and its target genes are also upregulat-
ed in the penumbra of brain infarcts (1). 

Upon dimerizing of HIF-1� with HIF-1�, HIF-1
translocates to the nucleus. HIF-1 binds a consensus
sequence within the hypoxia response element (HRE)
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HIF-1 target genes play essential roles in development,
angiogenesis, erythropoiesis, glucose transport, gly-
colysis, iron transport, and cell proliferation/survival.
Neuroprotection provided by HIF-1 appears to be
mediated by upregulation of the EPO gene that
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in the promoter region of O2-responsive genes and
recruits the co-activator, acetyltransferase CBP/p300
(8). This transcriptional complex regulates the expres-
sion of more than 100 pro-survival genes including
erythropoietin (EPO), VEGF, and glycolytic enzymes.

REVIEWS

FIGURE 4. Alteration in gene expression and protein level of eukaryotic translation initiation factors
(eIFs) after chronic hypoxia treatment
A: profiles of gene expression and regulation of eIFs in 4 individual mice subjected to normoxia (N1-N4), CCH (C1-
C4), and CIH (I1-I4) for 1, 2, or 4 wk. Each value is represented by a colored square. Duration of the treatment is indi-
cated before the letter of treatment (e.g., 1I2 = 1 wk CIH, 2nd mouse), whereas the green/red color of the square
shows down/upregulation, with brighter colors for higher regulation. Note both the variability and the reproducible
pattern among the mice subjected to the same treatment. Note also the darker colors of the normoxic values, since
they were closer to the average used in normalization. B: Western blot analysis of eIF-2 and eIF-4E in CCH, CIH, and
age-matched NC. Results were reproduced in 3 independent experiments and averaged. C and D: statistical analysis
(t-test) of densitometric analyses of Western results of eIF-2 and eIF-4E. The y-axis depicts the relative protein expres-
sion level as a ratio of the protein to its HSC70 density per 40 �g of total protein. Values are means ± SD (n = 3). 
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reduces the extent of apoptosis via crosstalk between
the Jak-2 and NF-�B signaling pathways (43). Studies
indicate that HIF-1 induces VEGF expression under
hypoxic stress, which can lead to increased paracellu-
lar permeability (51). However, severe hypoxia can
lead to HIF-1-mediated apoptotic cell death (which
can be either adaptive or pathological) that requires
p53 (25, 91, 160). Nitric oxide can be induced during
hypoxia and may serve a neuroprotective function by
stabilizing HIF-1� in addition to acting as a potent
vasodilator (90). VEGF levels are also increased after 8
wk of IH but not during CH (105). HIF accumulates in
the cytoplasm of cells in the cerebral cortex of old rats
exposed to protracted IH (160). 

Another transcription factor that is upregulated
during IH is the immediate early gene, cfos, which is a
component of the activator protein 1 (AP-1) (79, 177).
Sica et al (177) examined the expression of cfos, which
is used as a marker of neuronal excitation, in the neo-
cortex in response to IH. Rats chronically exposed to
IH had a persistent increase in cfos expression in vis-
cerolimbic regions of the cerebral cortex including the
medial bank of the prefrontal cortex, infralimbic
region of the cingulate cortex, retrosplenial granular
cortex, piriform cortex, and lateral temporal cortex.
Having previously reported that IH induced cfos in
NTS neurons in the brain stem, the authors believe
that IH-induced cardio-respiratory activation is initi-
ated at the level of the caudal and rostral medulla and
ascend via parallel pathways to the forebrain to pro-
vide long-term adaptation to chemo- and baro-recep-
tor responses to IH. However, the evidence that IH
induces long-lasting hypertension indicates that there
may be a dysregulation of cortical dampening mecha-
nisms acting to attenuate blood pressure increases
during extended IH. 

In microarray studies performed in our laboratory,
mice were exposed to 2 wk of either CH or IH and
examined for changes in global gene expression in the
CNS (213). The expression level of 80 genes was signif-
icantly altered by IH exposure, and 137 genes were
altered by CH in the cortex. The siRNA-mediated
knockdown of one gene, sarcospan, that was downreg-
ulated in both paradigms, also increased cell death in
hypoxia in a cell culture system. IH also has been
demonstrated to induce HIF-1� in the heart (23) and
in PC12 cells (209). Microarray analysis of myocardi-
um from IH- and CH-exposed mice revealed differen-
tial alterations in gene expression (56). Interestingly,
eukaryotic translation initiation factor 4E (iEF-4e) was
upregulated in CH hearts but downregulated in IH
hearts, which may explain the hypertrophic response
observed in CH hearts (FIGURE 4). Also, the downreg-
ulation of heart development-related genes such as
Notch gene homolog 1 and MAD homolog 4 and the
upregulation of proteolytic genes such as calpain-5
may underlie the lack of hypertrophy seen in these
studies. Even though changes in gene transcription

during IH may serve a protective function, maladap-
tive transcriptional changes may serve to undermine
homeostasis and promote aging. 

Summary and Potential for
Therapeutic Targets

It is clear from the work presented in this review that 1)
the regulation of O2 is important for cell and tissue
integrity and 2) when O2 levels are abnormal, especial-
ly with intermittent conditions and pathophysiology,
cells in specific organs such as brain, heart, liver, and
kidney and in blood vessels get injured with pathology
that sets a vicious cycle and that begets further pathol-
ogy. Therefore, disease states that start such an abnor-
mal regulation of O2 can set off cascades that promote
premature aging of blood vessels, cells, and organs. It
is interesting to note, at least from preliminary work in
our laboratory and those of others, that some alter-
ations that occur as a result of hypoxia may not be
reversible in the brain (or in other organs). Such data
would argue that hypoxia resulting from such disease
states as OSA/H ought to be treated to not induce irre-
versible changes, especially since it pertains to growth
and development in early life. 

Results from various laboratories have made great
progress in the last decade and have opened the way to
potential translational targets. For example, OSA/H
and intermittent hypoxia have been demonstrated to
alter metabolism. If such metabolic effects lead to
increased insulin resistance and diabetes, we would
draw from these findings a few conclusions. First, indi-
viduals suffering from such conditions would be 
predisposed to premature aging if these metabolic
abnormalities are not treated and persist. Second,
these are potentially treatable and can be eliminated.
Research in this area has made headway in our under-
standing of disease and importantly is leading to ther-
apeutic measures. 

We thank Pat Spindler and Shirley Reynolds for critical
reading of the manuscript. 
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