Preeclampsia: The Role of Angiogenic Factors in Its Pathogenesis

Preeclampsia, a systemic syndrome of pregnancy clinically characterized by new onset of proteinuria and hypertension, is associated with significant morbidity and mortality to both mothers and fetuses. The pathogenesis of preeclampsia has been enigmatic; this review will focus on understanding the origins of this disorder. Preeclampsia originates in the placenta, starting with inadequate cytotrophoblast invasion and ending with widespread maternal endothelial dysfunction. Production of placental anti-angiogenic factors, specifically soluble fms-related tyrosine kinase 1 and soluble endoglin, have been shown to be upregulated in preeclampsia. These placental anti-angiogenic factors are released into the maternal circulation; their actions disrupt the maternal endothelium and result in hypertension, proteinuria, and the other systemic manifestations of preeclampsia. The molecular basis for placental dysregulation of these pathogenic factors remains unknown, remains unknown. Hypoxia is likely an important regulator. Other factors such as alterations in the renin-angiotensin-aldosterone axis, immune maladaptation, excessive shedding of trophoblast debris, oxidative stress, and genetic factors likely contribute to the pathogenesis of the abnormal placentation. As of 2009, the only successful treatment for preeclampsia is delivery. No definitive preventive strategies have been identified. However, several of the recent observations related to phenotypic causality provide stimuli for the development of novel therapies.

Epidemiology and Risk Factors

The worldwide incidence of preeclampsia is 3-4% of all pregnancies (108b). Most cases of preeclampsia occur in healthy nulliparous women, in whom the incidence of preeclampsia may be as high as 7.5% (108a). Multiparous women pregnant with a new partner have a similar preeclampsia risk as nulliparous women (95); this has been ascribed to factors associated with a change in paternity or increased interpregnancy interval (90). In addition, women with preeclampsia in a prior pregnancy continue to have a high risk of preeclampsia in subsequent pregnancies. Although most cases of preeclampsia occur in the absence of a family history, the presence of preeclampsia in a first-degree relative increases a woman’s risk of severe preeclampsia two- to fourfold (16). A history of preeclampsia in the father’s mother or sister of a woman increases the risk of preeclampsia (27). Obesity could contribute to the pathogenesis of preeclampsia by which the numerous obesity could contribute to the pathogenesis of preeclampsia by affecting adipose tissue in mice (rats live longer than mice).

Preeclampsia: The Role of Angiogenic Factors in Its Pathogenesis

Preeclampsia, a pregnancy-specific disorder characterized clinically by new onset hypertension and proteinuria after 20 wk of gestation, is the most frequently encountered medical complication during pregnancy, affecting 3-5% of pregnant women worldwide (108a). In developing countries where access to health care is limited, preeclampsia is a leading cause of maternal mortality, with estimates of >60,000 maternal deaths/yr (108b). In the developed world, the burden of this disease falls on the neonate because of prematurity deliveries performed to preserve the health of the mother. Worldwide, preeclampsia is associated with a perinatal and neonatal mortality rate of 10% (4). Delivery of the placenta results in resolution of the condition, implicating the placenta as a central culprit in the pathogenesis of preeclampsia. This has led to a two-stage theory whose proponents hypothesize preeclampsia to be a systemic syndrome that originates in the placenta and is characterized by maternal endothelial dysfunction (101). This article considers the pathogenesis as well as the diagnostic and therapeutic advances in preeclampsia.

Epidemiology and Risk Factors

The worldwide incidence of preeclampsia is 3-4% of all pregnancies (108b). Most cases of preeclampsia occur in healthy nulliparous women, in whom the incidence of preeclampsia may be as high as 7.5% (108a). Multiparous women pregnant with a new partner have a similar preeclampsia risk as nulliparous women (95); this has been ascribed to factors associated with a change in paternity or increased interpregnancy interval (90). In addition, women with preeclampsia in a prior pregnancy continue to have a high risk of preeclampsia in subsequent pregnancies. Although most cases of preeclampsia occur in the absence of a family history, the presence of preeclampsia in a first-degree relative increases a woman’s risk of severe preeclampsia two- to fourfold (16). A history of preeclampsia in the father’s mother or sister of a woman increases the risk of preeclampsia (27).

Several medical conditions are associated with increased preeclampsia risk, including chronic hypertension, diabetes mellitus, renal disease, obesity, and
Epidemiological studies show that an increased placental mass, such as multifetal gestations and hydatidiform mole also predispose women to pre-eclampsia. There seems to be no clear association between consanguinity and the incidence or severity of pre-eclampsia (9), however, there are reports of familial aggregation of pre-eclampsia and intrauterine growth restriction in a genetically isolated population (12). Interestingly, without any obvious pregnancy appears to reduce the risk of pre-eclampsia (24). Although none of these epidemiological risk factors are well understood, they have helped to provide insight into the pathogenesis of pre-eclampsia.

Clinical Features

The cardinal features of pre-eclampsia are de novo onset of hypertension (defined as systolic blood pressure ≥140 mmHg or diastolic blood pressure ≥90 mmHg, and proteinuria (≥0.3 g in a 24-h urine specimen and/or protein to creatinine ratio of ≥0.30). Historically, edema was part of the diagnostic triad for pre-eclampsia; however, edema was too nonspecific to be disease defining. Still, the sudden onset of severe edema, especially edema of the hands and face, is often the only change detectable by the patient in this otherwise insidious disease. Pre-eclampsia develops from 20 wk of gestation onward until term, although most cases are diagnosed preterm. In some cases, pre-eclampsia may even first present after delivery.

The spectrum of preeclampsia varies widely. For clinical purposes, it is classified as mild or severe, but such classifications may be misleading. Although the classification of severe pre-eclampsia serves to emphasize the more ominous features of the syndrome (see Table 1), some have suggested a more nuanced disease categorization (55a) or a classification of the disease based on the gestational age of presentation (98). The degree of proteinuria varies from minimal to massive; however, the amount of proteinuria does not appear to have an effect on maternal or fetal outcomes (106). The approach to pregnant women with hypertension but without proteinuria is uncertain, but close follow-up is prudent. This recommendation is supported by the observation that mild gestational hypertension that occurs remote from term may subsequently develop into preeclampsia (10). Ten percent of women with other clinical and/or histological manifestations of preeclampsia have minimal or no proteinuria (29), and 20% of women who develop eclampsia (seizures) have no proteinuria (88). Lafayette et al. showed that, in women with pre-eclampsia, the GFR is depressed, whereas the renal plasma flow and oncotic pressure is similar to healthy pregnant women (49). Uncommon but serious maternal complications of preeclampsia include acute renal failure, placental abruption, seizures, pulmonary edema, acute liver injury, hemolysis, and/or thrombocytopenia. The latter three signs frequently occur together as part of the HELLP (hemolysis, elevated liver enzymes, and low platelets) syndrome. Considered by many to be a severe variant of preeclampsia, HELLP syndrome is associated with a higher risk of maternal and neonatal adverse outcomes than preeclampsia alone. Eclampsia complicates ~2% of preeclampsia cases in the United States. Up to one-third of eclampsia cases occur postpartum, up to 6 wk after delivery (88). Complications affecting the developing fetus include both iatrogenic and spontaneous preterm delivery (111), intrauterine fetal growth restriction (IUGR), oligohydramnios, and increased risk of perinatal death.

Although the acute symptoms of preeclampsia will remit after delivery, there are epidemiological studies suggesting that there may be long-term cardiovascular consequences. Approximately 20% of women with preeclampsia develop hypertension or microalbuminuria within 7 yr of a pregnancy complicated by preeclampsia compared with only 2% among women with uncomplicated pregnancies (88). A study published by Smith et al. (91) reported that that at 1 yr ~20% of women have residual microalbuminuria. In addition, the long-term risk of cardiovascular and cerebrovascular disease is doubled in women with preeclampsia and gestational hypertension (76). Although the absolute risk of ESRD in this population is low (97). recent study by Vikse et al. showed that preeclampsia is also a marker for increased risk for subsequent end-stage renal disease (ESRD), although the absolute risk of ESRD in this population is low (97). Preeclampsia and cardiovascular disease share many common risk factors, including chronic hypertension, diabetes, obesity, renal disease, and metabolic syndrome. Smith et al. (91) showed that, by 1 yr postpartum, women who developed preeclampsia had increased blood pressure; total cholesterol, high-density lipoprotein cholesterol, triglycerides, increased BMI, fasting insulin, HOMA index, and urinary microalbumin/creatinine ratio. The increase in long-term cardiovascular mortality holds even for previously healthy women without any overt vascular risk factors who develop preeclampsia (20). Thus the increase in long-term cardiovascular events in women with a history of preeclampsia may be either the result of shared risk factors or the result of subtle vascular damage or persistent endothelial dysfunction caused by preeclampsia.

Pathogenesis

The first decade of major advances in the pathophysiology of preeclampsia was the “disease concept” as the "disease of the placenta," as a result of the discovery of the fetal origin of the disease, the discovery of the fetal origin of the disease, and the demonstration of molecular abnormalities in placental vessels. This latter concept was the result of shared risk factors or the result of subtle vascular damage or persistent endothelial dysfunction caused by preeclampsia.
include acute respiratory distress syndrome, pulmonary edema, thrombosis, fever, and renal dysfunction.

Pathogenesis

The first decade of this millennium has witnessed major advances in our understanding of the pathophysiology of preeclampsia. Historically known as the "disease of theories," the mystery about the molecular pathogenesis of preeclampsia is beginning to be unraveled with a key discovery about alterations in the placental antiangiogenic factors. These antiangiogenic factors, such as sFlt1 and soluble endoglin, produce systemic endothelial dysfunction, resulting in hemostasis, proteinuria, and the other systemic manifestations of preeclampsia (63, 96). The molecular basis for placental dysregulation of these pathogenic factors remains unknown, and the role of angiogenic proteins in early placentation vascular development and trophoblast invasion is just beginning to be explored. Hypoxia is likely to be an important regulator. In addition, the renin-aldosterone-angiotensin II axis, excessive oxidative stress and syncytiotrophoblast debris, immune maladaptation, and genetic susceptibility may also have roles in the pathogenesis of preeclampsia.

Role of the placenta

The placenta is central to preeclampsia. Preeclampsia only occurs in the presence of a placenta and almost always remits after its delivery. As in the case of the hydatidiform mole, the presence of a fetus is not necessary for the development of preeclampsia. Similarly, in a case of preeclampsia with an extra-uterine pregnancy, removal of the fetus alone was not sufficient, and symptoms persisted until the placenta was delivered (87). Cases of postpartum eclampsia have been observed after the placenta has been removed (87). Cases of postpartum eclampsia have been observed after retained placental fragments, with rapid improvement after uterine curettage (62).

Early in normal placental development, extravillous cytotrophoblasts replace the endothelial layer of the maternal spiral arteries, transforming them from small, high-resistance vessels to high-caliber capacitance vessels (see FIGURE 1) capable of providing adequate placental perfusion to sustain the growing fetus. In preeclampsia, this transformation is incomplete. Cytotrophoblast invasion of the spiral arteries is limited to the superficial decidua, and the myometrial segments remain narrow (65). Fisher et al. showed that in normal placental development the cytotrophoblasts assume an endothelium phenotype in a process called pseudovasculogenesis (114), in vascular mimicry, by downregulating the expression of adhesion molecules characteristic of their epithelial cell origin and adopting an endothelial cell surface adhesion phenotype. Unlike preeclampsia, cytotrophoblasts do not undergo this switching of cell-surface molecules and thus are unable to adequately invade the myometrial spiral arteries (113).

Although there is not yet any definitive therapeutic or preventative strategy for preeclampsia, clinical experience suggests that early detection, monitoring, and supportive care are beneficial to the patient and the fetus.

Angiogenic factors are thought to be important in the regulation of placental vascular development (96). Fh1 (VEGFR-1), VEGFR-2, Tie-1, and Tie-2 are essential for normal placental vascular development. Alterations in these pathways in early gestation may contribute to inadequate cytotrophoblast invasion observed in the placentas of women with preeclampsia. Mice with these gene deletions have defective placental vasculogenesis and early embryonic mortality (17a). Invasive cytotrophoblasts express vascular endothelial growth factor (VEGF), placental growth factor (PIGF), and VEGFR-1 (Flt-1). Expression of these proteins by immunolocalization is altered in preeclampsia (115). sFlt1 has been shown to decrease cytotrophoblast invasiveness in vitro (115), and circulating sFlt1 levels stay relatively low in early pregnancy and begin to rise in the third trimester. This may reflect a physiological anti-angiogenic shift in the placental milieu toward the end of pregnancy, corresponding to the completion of the vasculogenic phase of placental growth. Alterations in these angiogenic pathways in early gestation could contribute to the inadequate cytotrophoblast invasion seen in preeclampsia, thereby sparking a cycle of continued derangement in angiogenic balance, however, there is no definitive evidence for this hypothesis so far. By the third trimester, excess placental sFlt1 accumulates in the maternal circulation, produces end-organ effects, and reflects the
degree of placental ischemia. Similar to sFlt1, both monoclonal antibodies to endoglin and antisense endoglin oligonucleotides stimulated trophoblast outgrowth and migration in experiments using trophoblasts from 5 to 8 wk of gestation (14). Endoglin (CD105) is a cell surface receptor for TGF-beta. TGF-beta 1 and/or TGF-beta 3 inhibit trophoblast migration and invasion, endoglin may mediate this effect (14).

Therefore, it is possible that soluble endoglin produced by the placenta may be a compensatory mechanism to limit the effects of membrane-bound or surface endoglin. In preeclampsia, excessive production of surface endoglin leads to increased sEng in the maternal circulation. sEng together with sFlt1 may be responsible for the maternal endothelial dysfunction and the clinical manifestations of preeclampsia (see below).

Target effects

Although preeclampsia, the term (78). Many studies and evidence and endothelial and cerebral vasodilatory factors and platelet aggregation are possible for the preeclampsia, renal, and cerebral arteries. In 1959, Strevens identified endotheliosis in renal glomeruli and considered the finding of cerebral parenchymal edemas in women with gestational hypertension as evidence of preeclampsia. However, these signs are often noted in women with normal pregnancy. In 1990, Sibai and colleagues described exaggerated arterial resistance and increased perivascular pressures in preeclampsia, and noted a high incidence of cerebral edema. In 1990, Sibai and colleagues described exaggerated arterial resistance and increased perivascular pressures in preeclampsia, and noted a high incidence of cerebral edema. Further studies have shown that cerebral edema occurs in up to 20% of women with severe preeclampsia and is a common finding in cerebral parenchymal edemas in women with preeclampsia. Therefore, it is possible that soluble endoglin produced by the placenta may be a compensatory mechanism to limit the effects of membrane-bound or surface endoglin. In preeclampsia, excessive production of surface endoglin leads to increased sEng in the maternal circulation. sEng together with sFlt1 may be responsible for the maternal endothelial dysfunction and the clinical manifestations of preeclampsia (see below).

Hemodynamic changes

There are physiological changes in maternal hemodynamics in preeclampsia, with increases in cardiac output, decreased systemic vascular resistance, and increased renal blood flow. Some studies have noted that the resistance to renal perfusion is higher in preeclampsia than in normal pregnancy. A progressive increase in cardiac output, with increased oxygen delivery to the placenta, has been reported in preeclampsia. This increased flow is due to a decrease in total peripheral resistance, which is mediated by the release of vasoactive substances such as nitric oxide and prostaglandins. The increased flow to the placenta may also be due to a decrease in uterine artery resistance, which is mediated by the release of relaxin and other relaxin-like factors. These factors act to relax smooth muscle in the uterine arteries and reduce the resistance to blood flow.
Target effects: maternal endothelial dysfunction

Although preeclampsia appears to begin in the placenta, the target organ is the maternal endothelium (79). Many serum markers of endothelial activation and endothelial dysfunction are deranged in women with preeclampsia, including von Willebrand antigen, cellular fibronectin, soluble tissue factor, soluble E-selectin, platelet-derived growth factor, and endothelin. The incubation of serum taken from preeclamptic women with endothelial cells results in endothelial dysfunction (96). It has been hypothesized that circulating factors originating from the placenta are responsible for the profound effects on the cardiovascular, renal, and cerebral systems (80).

Hemodynamic changes. During normal pregnancy, there are physiological decreases in peripheral vascular resistance and arterial blood pressure, accompanied by increases in cardiac output and vascular compliance. Inversely, preeclampsia is characterized by widespread vasoconstriction, increased vascular resistance, and decreased cardiac output and vascular compliance. Some studies have suggested that cardiac output may be higher in preeclamptic subjects before the onset of overt signs and symptoms (16). This is particularly noted in women with higher BMI. There is also exaggerated sensitivity to vasopressors such as angiotensin II and norepinephrine (80). Women who go on to develop preeclampsia have impaired endothelium-dependent vasorelaxation (44) and subtle increases in blood pressure and pulse pressure before the onset of overt hypertension and proteinuria (22).

Renal pathology. Injury to maternal endothelium is most clearly visualized in the kidney, which reveals the characteristic pathological changes of preeclampsia. In 1959, Spargo et al. coined the term glomerular endotheliosis to describe the ultrastructural changes in renal glomeruli, including generalized swelling and vacuolization of the endothelial cells and loss of the capillary space (see FIGURE 2) (29). There are also deposits of fibrin within and under the endothelial cells. Electron microscopy shows loss of glomerular endothelial fenestrae (49). Unlike other nephrotic diseases, endothelial cells appear to be primarily injured, with modest damage to the podocyte foot processes. Although glomerular endotheliosis was once considered pathognomonic for preeclampsia, recent studies by Stevens et al. showed that mild glomerular endotheliosis also occurs in pregnancy without preeclampsia, especially in a subset of subjects with gestational hypertension (92). This suggests that the endothelial dysfunction of preeclampsia may be an exaggeration of a normal physiological process that occurs near the end of a term pregnancy.

Cerebral edema. Cerebral edema and intracerebral parenchymal hemorrhage are common autopsy findings in women who died from eclampsia, but there is considerable controversy in the literature on the finding of cerebral edema. The cerebral edema in
Eclampsia does not correlate with the severity of hypertension, suggesting that the edema may be secondary to endothelial dysfunction rather than a direct result of blood pressure elevation (84). Findings on head CT and MRI are similar to those seen in hypertensive encephalopathy, with vasogenic cerebral edema and infarctions in the subcortical white matter and adjacent gray matter, predominantly in the parietal and occipital lobes (88). An eclampsia-type syndrome with these characteristic MRI changes have been associated with other clinical scenarios, specifically acute hypertensive encephalopathy in the setting of renal disease or immunosuppression (36) as well as with the use of anti-angiogenic agents for cancer therapy (73). This syndrome is called reversible posterior leukoencephalopathy syndrome (RPLS) or posterior reversible encephalopathy syndrome (PRES). This association supports the involvement of innate antiangiogenic factors in the pathophysiology of preeclampsia/eclampsia, as detailed in the next section.

Mechanisms of preeclampsia

Altered angiogenic balance. Imbalance of endogenous angiogenic factors plays a key role in the pathogenesis of preeclampsia. Increased expression of soluble fms-like tyrosine kinase-1 (sFlt1), associated with decreased placental growth factor (PlGF) and VEGF signaling, were the first abnormalities described (3, 63). VEGF stabilizes endothelial cells in mature blood vessels and is particularly important in maintaining the endothelium in the kidney, liver, and brain. VEGF signals through two major receptors: Flk and Flt1. sFlt1 is a truncated splice variant of the membrane-bound VEGF receptor Flt1, also called VEGFR1. sFlt1 consisting of the extracellular ligand-binding domain without the transmembrane and intracellular signaling domains, is secreted by primarily syncytiotrophoblasts into the maternal circulation (18). sFlt1 has also been found to be made in monocytes (75). sFlt1 antagonizes both VEGF and PlGF by binding them in the circulation and preventing interaction with their endogenous receptors (see FIGURE 3) (43).

Placental expression of soluble Flt1 is increased in preeclampsia and is associated with a marked increase in maternal circulating sFlt1 (63). Several investigators have confirmed that the increase in maternal circulating sFlt1 precedes the onset of clinical disease (52, 64, 105) and is correlated with disease severity (17, 52). In addition, in molar gestations, levels of sFlt1 are found to be elevated and may play a role in early onset preeclampsia reported in such pregnancies (47). In vitro effects of sFlt1 include vasoconstriction and endothelial dysfunction. Exogenous sFlt1, delivered via an adenovirus vector to pregnant rats, induced a syndrome resembling preeclampsia, including hypertension, proteinuria, and glomerular endotheliosis (63). Several variants of sFlt1 have been discovered, including a primate-specific variant that is designated sFlt1-14 (43, 85). sFlt1-14 is the predominant VEGF inhibitor produced by human nonendometrial cells and in early studies appears to be the majority of the VEGF-neutralizing protein produced by the placenta in preeclamptic women (85).

VEGF is highly expressed by glomerular podocytes, and VEGF receptors are present on glomerular endothelial cells (58). Anti-VEGF therapies given to adult animals cause glomerular endothelial damage with proteinuria (93). In a podocyte-specific VEGF knockout mouse in renal disease, glomerular endotheliosis is associated with proteinuria (92). This finding supports the involvement of innate antiangiogenic factors in the pathogenesis of preeclampsia.

Normal

![Normal](image1)

Preeclampsia

![Preeclampsia](image2)

FIGURE 3. sFlt1 and sFlt1-14 cause endothelial dysfunction by antagonizing VEGF and TGF-β signaling

There is mounting evidence that VEGF and TGF-β are required to maintain endothelial health in several tissues, including the kidney and perhaps the placenta. During normal pregnancy, vascular homeostasis is maintained by physiological levels of VEGF and TGF-β1 signaling in the vasculature. In preeclampsia, excess placental secretion of sFlt1 and sFlt1-14 cause endothelial dysfunction, including decreased proliferation, nitric oxide production, and release of procoagulant proteins. Figure adapted from Ref. 41.
In summary, the role of trophoblast invasion is seen in preeclampsia is a consequence of or cause of placental ischemia/hypoxia. In pregnant primates and other mammals, constriction of uterine blood flow is associated with hypertension, proteinuria, and abnormal placentation. In humans, anti-angiogenesis cancer trials with anti-VEGF antibodies have been observed. The other major angiogenic factor regulated by HIF, including angiopoietin-2, is a potent angiogenic growth factor that is thought to amplify VEGF signaling by displacing VEGF from the Flt1 receptor and allowing it to bind to the more potent KDR receptor instead. During pregnancy, inhibition of both PIGF and VEGF is necessary to produce preeclampsia-like changes in pregnant rats.

Angiogenesis is common to both IUGR and preeclampsia. In addition, defective trophoblast invasion results in placental insufficiency frequently occur without preeclampsia. In addition, defective trophoblast invasion and inadequate maternal spiral artery remodeling is common to both IUGR and preeclampsia. Placental ischemia and hypoxia frequently go hand-in-hand. Women with preeclampsia have alterations in placental hypoxia-inducible factor (HIF) and its target genes. Women resident at high altitudes also have similar alterations in HIF and the rates of preeclampsia in this population are two- to fourfold higher. Common subjects of HIF-1 regulation include many angiogenic proteins, including Flt-1, VEGF-B, Tie-1, and Tie-2. Invase cerebrovascular damage and secretion of soluble Flt1 in primary trophoblast cultures has been shown to upregulate expression and secretion of Flt1, which has been shown to block cytotrophoblast invasion, is another HIF target. HIF has been shown to upregulate expression and secretion of soluble Flt1 protein in primary trophoblast cultures from first-trimester placenta. Paradoxically, cigarette smoking, an important risk factor for fetal growth restriction, is consistently associated with a reduced risk for preeclampsia. Levels of circulating sFlt1 and sEng are significantly lower in women who smoke.

Placental ischemia/hypoxia frequently go hand-in-hand. Women with preeclampsia have alterations in placental hypoxia-inducible factor (HIF) and its target genes. Women residing at high altitudes also have similar alterations in HIF and the rates of preeclampsia in this population are two- to fourfold higher. Common subjects of HIF-1 regulation include many angiogenic proteins, including Flt-1, VEGF-B, Tie-1, and Tie-2. Invase cerebrovascular damage and secretion of soluble Flt1 in primary trophoblast cultures has been shown to upregulate expression and secretion of Flt1, which has been shown to block cytotrophoblast invasion, is another HIF target. HIF has been shown to upregulate expression and secretion of soluble Flt1 protein in primary trophoblast cultures from first-trimester placenta. Paradoxically, cigarette smoking, an important risk factor for fetal growth restriction, is consistently associated with a reduced risk for preeclampsia. Levels of circulating sFlt1 and sEng are significantly lower in women who smoke.

Placental ischemia/hypoxia frequently go hand-in-hand. Women with preeclampsia have alterations in placental hypoxia-inducible factor (HIF) and its target genes. Women residing at high altitudes also have similar alterations in HIF and the rates of preeclampsia in this population are two- to fourfold higher. Common subjects of HIF-1 regulation include many angiogenic proteins, including Flt-1, VEGF-B, Tie-1, and Tie-2. Invase cerebrovascular damage and secretion of soluble Flt1 in primary trophoblast cultures has been shown to upregulate expression and secretion of Flt1, which has been shown to block cytotrophoblast invasion, is another HIF target. HIF has been shown to upregulate expression and secretion of soluble Flt1 protein in primary trophoblast cultures from first-trimester placenta. Paradoxically, cigarette smoking, an important risk factor for fetal growth restriction, is consistently associated with a reduced risk for preeclampsia. Levels of circulating sFlt1 and sEng are significantly lower in women who smoke.

Placental ischemia/hypoxia frequently go hand-in-hand. Women with preeclampsia have alterations in placental hypoxia-inducible factor (HIF) and its target genes. Women residing at high altitudes also have similar alterations in HIF and the rates of preeclampsia in this population are two- to fourfold higher. Common subjects of HIF-1 regulation include many angiogenic proteins, including Flt-1, VEGF-B, Tie-1, and Tie-2. Invase cerebrovascular damage and secretion of soluble Flt1 in primary trophoblast cultures has been shown to upregulate expression and secretion of Flt1, which has been shown to block cytotrophoblast invasion, is another HIF target. HIF has been shown to upregulate expression and secretion of soluble Flt1 protein in primary trophoblast cultures from first-trimester placenta. Paradoxically, cigarette smoking, an important risk factor for fetal growth restriction, is consistently associated with a reduced risk for preeclampsia. Levels of circulating sFlt1 and sEng are significantly lower in women who smoke.

Placental ischemia/hypoxia frequently go hand-in-hand. Women with preeclampsia have alterations in placental hypoxia-inducible factor (HIF) and its target genes. Women residing at high altitudes also have similar alterations in HIF and the rates of preeclampsia in this population are two- to fourfold higher. Common subjects of HIF-1 regulation include many angiogenic proteins, including Flt-1, VEGF-B, Tie-1, and Tie-2. Invase cerebrovascular damage and secretion of soluble Flt1 in primary trophoblast cultures has been shown to upregulate expression and secretion of Flt1, which has been shown to block cytotrophoblast invasion, is another HIF target. HIF has been shown to upregulate expression and secretion of soluble Flt1 protein in primary trophoblast cultures from first-trimester placenta. Paradoxically, cigarette smoking, an important risk factor for fetal growth restriction, is consistently associated with a reduced risk for preeclampsia. Levels of circulating sFlt1 and sEng are significantly lower in women who smoke.
clearly critical to successfully supporting a pregnancy, but overt placental ischemia and hypoxia may not be the causative factor in preeclampsia but rather an important secondary event.

Renin-angiotensin-aldosterone. In addition to altered angiogenic balance and failed cytrophoblast invasion, the renin-angiotensin-aldosterone axis is also perturbed in preeclampsia. In normal pregnancy, renin, aldosterone, and angiotensin are increased. These hormones are suppressed relative to normal pregnancy in preeclampsia. Women with preeclampsia have increased vascular responsiveness to angiotensin II and other vasoconstrictive agents. Angiotensin II is a well recognized octapeptide mediator of elevated blood pressure that signals arterial vasoconstriction after binding to the angiotensin II type 1 (AT1) receptor. Angiotensin II hypersensitivity in preeclampsia may also be due to heterodimerization of AT1 receptors with bradykinin receptors (1). Studies have identified agonistic (AT1) receptor autoantibodies in women with preeclampsia (99). These AT1 receptor autoantibodies, like angiotensin II itself, could lead to the production of tissue factor by endothelial cells. Xia et al. found that AT1 receptor autoantibodies decreased invasiveness of immortalized human trophoblasts in an in vitro invasion assay (100). Studies from Zhou et al. indicate that AT1 receptor autoantibodies recovered from the circulation of women with preeclampsia can replicate the key features of preeclampsia in pregnant mice (101). AT1 receptor autoantibodies appear to be increased as well in malignant renovascular hypertension and vascular rejection (30). These autoantibodies may account for the increased angiotensin II sensitivity for preeclampsia. In summary, AT1-AA may be one of several insults that can contribute to the placental damage that is proximally linked to the production of anti-angiogenic factors (see FIGURE 4).

Immunological intolerance and inflammation/oxidative stress. Immune maladaptation remains an intriguing explanation about the pathogenesis of preeclampsia. Normal placentation requires the development of immune tolerance between the fetus and the mother. Preeclampsia occurs more often in first pregnancies, after a change in paternity (94), or with long interpregnancy interval (95). In addition, women using barrier contraceptive methods that reduce maternal exposure to sperm have increased incidence of preeclampsia (46). Women who conceived via intracytoplasmic sperm injection (ICSI) in which sperm was surgically obtained from the male had a threefold increased risk of preeclampsia compared with ICSI cases where sperm was obtained by ejaculation (102). These observations suggest that preeclampsia may involve an abnormal maternal immune response to novel paternal derived fetal antigens. Women with untreated HIV have a very low incidence of preeclampsia, but the incidence returns to normal in HIV-positive women who are on antiretroviral therapy (108). Natural killer (NK) cells at the maternal/fetal interface are also thought to play an important role in the pathogenesis of preeclampsia. They are thought to be important in modulating immune tolerance required for normal placentation development as well as the induction of angiogenic factors and vascular remodeling (33). Recent genetic studies have suggested that the susceptibility to preeclampsia may be influenced by polymorphic human leukocyte antigen C (HLA-C) ligands and the killer immunoglobulin receptors (KIRs) present on NK-cell surface. Secretion of cytokines by polymorphic human leukocyte antigen C (HLA-C) ligands and the killer immunoglobulin receptors (KIRs) present on NK-cell surface...
AA may be one inflammatory explanation of the circulatory remodeling of preeclampsia (30). However, the explanation function noted during pregnancy appears to be a more hyperactive autoimmune system (94), or preeclampsia (112). It appears to be influenced by multiple susceptibility genes. Other candidate genes that have been studied include prothrombin, lipoprotein lipase, superoxide dismutase, nitric oxide synthetase, and apolipoprotein E (107). Currently in progress in Great Britain is a large study called The Genetics of Preeclampsia Collaborative (GOPEC) study that is collecting genomic information from 1,000 women with preeclampsia, along with the proband’s parents, child, and partner to explore both maternal and fetal contributions to preeclampsia risk. From an evolutionary perspective, FHI variants may confer increased fetal fitness in sub-Saharan Africa from placental malaria and may be under natural selection in a malaria endemic area (86).

Clinical implications

Although there is not yet any definitive therapeutic or preventative strategy for preeclampsia, clinical evidence suggests that early detection, monitoring, and supportive care are beneficial to the patient and the fetus. Reliable prediction of preeclampsia would allow closer prenatal monitoring and timely intervention with steroids to enhance fetal lung maturity, magnesium for seizure prophylaxis, anti-hypertensive medications and bedrest, and expeditious delivery as necessary. Furthermore, a robust biomarker for preeclampsia would provide a clear endpoint to simplify human studies of novel therapies and preventative strategies for preeclampsia. However, no screening test has yet proven accurate enough for widespread clinical use (19).

Because alterations in circulating levels of angiogenic factors occur weeks before the clinical onset of preeclampsia, they represent promising biomarkers for screening and/or diagnosis. Significant elevations in maternal fβ1 and sEng are observed from mid-gestation onward (73, 105) and appear to rise 5–8 wk before onset of disease (34, 51). The ratio of sFlt1 and sEng to PIGF is a better marker for the diagnosis/prognosis of preeclampsia than any measure alone (51). Retrospective studies demonstrating the feasibility of a urine screening test (PIGF) followed by a confirmatory blood test for circulating angiogenic proteins (fβ1 and PIGF) for the prediction of preeclampsia are promising (53). Placental protein 13 (PP13) has been reported to be a robust first trimester biomarker for predicting preeclampsia. The biological role of PP13 and its relationship with angiogenic factors remain unknown (31).

Other than delivery of the placenta, there is no known cure. After delivery, symptoms typically resolve within 48–72 h. Potential novel pharmacological treatment strategies may include restoration of normal angiogenic balance in the maternal circulation. One example would be VEGF-121. VEGF-121 was shown to diminish hypertension and proteinuria and prevent extensive renal pathology in a rat model of fβ1-induced preeclampsia, without apparent harm to the fetus (54). Any intervention that could delay delivery and prolong fetal gestation could have a tremendous impact on neonatal morbidity and mortality. Studies

KIRs (HLA-C) present on NK cells (35). Alterations in decidual NK-cell signaling with subsequent disturbance in the secretion of cytokines and angiogenic factors may mediate the abnormal placentation noted in preeclampsia.

Normal pregnancy, a condition with an enhanced systemic inflammatory response, becomes markedly exaggerated in preeclampsia (77). There is evidence of increased circulating fetal DNA and syncytiotrophoblast debris in the maternal circulation in women with preeclampsia (38, 78, 83). This debris, consisting of syncytiotrophoblast membrane microvilli and cytokines, is proinflammatory and a likely cause for increased oxidative stress.

Endothelial dysfunction in preeclampsia has also been attributed to placental oxidative stress, the excess production of damaging reactive oxygen species (77). A key animal model of preeclampsia is produced by infusion of an inhibitor of nitric oxide (NO) synthesis called L-NAME (L-nitroarginine methyl-ester), into pregnant rats, which produces hypertension, proteinuria, and thrombocytopenia (110). In preeclampsia, there is decreased production of enzymatic antioxidants (100, 103, 117). Markers of high oxidative stress are also detectable in preeclamptic placentas (77), with increased superoxide generation (89, 104), placental levels of lipid peroxidation (101), and production and secretion of isoprostanes (101). There have been a few human clinical trials looking for benefit of antioxidants in preeclampsia. In a small study, treatment with the antioxidant lycopene was also found to reduce the risk of preeclampsia (86). Unfortunately, in randomized controlled studies, supplementation with vitamin C and E during pregnancy has not been shown to reduce the risk of preeclampsia in nulliparous women, intrauterine growth restriction, has not been shown to reduce the risk of preeclampsia than any measure alone (51). A small study, treatment with the antioxidant lycopene was also found to reduce the risk of preeclampsia in nulliparous women, intrauterine growth restriction, and other adverse fetal outcomes (13, 74, 81). In summary, although oxidative stress is present in preeclampsia, more work will be needed to design and test specific antioxidants that ameliorate the placental secretion of toxic factors but at the same time promote vascular endothelial health.

Genetics. Although most cases of preeclampsia occur in women without a family history, the presence of preeclampsia in a first-degree relative increases a woman’s risk of severe preeclampsia two- to fourfold (16). If a woman becomes pregnant by a man who has already fathered a preeclamptic pregnancy in a different woman, her risk of developing preeclampsia is almost doubled (53). These studies implicate a strong paternal (thus fetal) component to the genetic predisposition and support a single-gene inheritance model that requires homozygosity for the same recessive gene in both mother and fetus (56). Others have hypothesized a role for genomic imprinting. STOX1 has been extensively studied, with inconsistent findings about its association with preeclampsia (11, 45). Still others believe that preeclampsia is polygenic with influence from multiple susceptibility genes. Other
Summary and Future Directions

Our understanding about the pathogenesis of preeclampsia has significantly evolved (see FIGURE 4). Although the initiating events in preeclampsia are still not known, research about the role of circulating angiogenic factors and their regulation will have exciting clinical implications and are likely to transform the detection and treatment of preeclampsia in the future. Many challenges need to be met before findings from this discovery can be applied to disease prevention and treatment. Prospective longitudinal studies examining both urine and serum throughout gestation from this discovery can be applied to disease prevention and treatment. Prospective longitudinal studies examining both urine and serum throughout gestation from this discovery can be applied to disease prevention and treatment.

Korsholm E, Thomsen SF, Rasmussen S, Buch M, Andersen AC, Krarup T, Poulsen PE, Sorensen HT, Christiansen J. Serum soluble vascular endothelial growth factor receptor-1 (sFlt-1) concentration is an early and reliable predictor of preeclampsia. Hypertension 45: 931–936, 2005.

158

PHYSIOLOGY • Volume 24 • June 2009 • www.physiologyonline.org

CNS Reviews

The past decade has seen an explosive growth in research into the cellular, molecular, and biochemical mechanisms by which the brain controls or regulates metabolic processes. For example, studies over the past decade have described an entero-insular axis, through which nutrient delivery to the gut lumen leads to increased production of cholecystokinin (CCK) by the gut wall. CCK, in turn, stimulates insulin secretion from the pancreas, which in turn stimulates the brain to increase glucose uptake and utilization. This axis is thought to play a critical role in the regulation of energy balance and body weight. More recently, studies have also shown that the brain can control metabolic processes by directly communicating with the liver, muscle, and adipose tissue via the peripheral nervous system. For example, studies have shown that the brain can influence the expression of genes involved in energy metabolism in the liver, muscle, and adipose tissue via the sympathetic nervous system.

CNS Hormones and Insulin

The central nervous system (CNS) is a key regulator of metabolic processes, and recent research has shown that the CNS can communicate with the periphery to influence energy balance and body weight. This communication occurs through a network of neural pathways that control key metabolic processes, including glucose homeostasis, lipid metabolism, and appetite regulation.

Insulin

Insulin is a hormone produced by the pancreas that plays a critical role in regulating glucose levels in the blood. It works by promoting the uptake of glucose into muscle, fat, and liver cells, where it is used for energy or stored as glycogen or fat. Insulin also regulates the release of amino acids and fatty acids from the liver, which are used as fuel for muscle cells.

CNS hormonogenes and insulin resistance

CNS hormonogenes is a term used to describe the influence of the central nervous system (CNS) on the release of hormones that regulate metabolic processes. This influence can occur through a variety of mechanisms, including the release of neurotransmitters, the activation of neuroendocrine pathways, and the modulation of peripheral hormone receptors.

CNS hormonogenes is thought to play a critical role in the development of insulin resistance, a condition in which the body becomes resistant to the effects of insulin. This resistance can lead to an increase in blood glucose levels and an increased risk of diabetes.

CNS hormonogenes is a complex and multifaceted phenomenon, and much remains to be learned about the mechanisms by which it works. However, ongoing research is likely to provide important insights into the regulation of metabolic processes and the development of insulin resistance.