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Ca"-dependent Cl~ channels (CaCCs) play a variety of physiological roles in

different organs and tissues, including transepithelial Cl™ secretion, smooth

muscle contraction, regulation of neuronal excitability, and transduction of

sensory stimuli. The recent identification of TMEM16A protein as an important

component of CaCCs should allow a better understanding of their physiolog-

ical role, structure-function relationship, and regulatory mechanisms.

Chloride channels have been neglected for a long
time and considered little more than a background
conductance that passively follows cation trans-
port. This lack of interest was the result of various
factors. In general, the physiological role of ClI™
conductance and its regulation in many organs
and tissues were not understood. Furthermore,
there were no selective pharmacological inhibitors
that could help in assessing the contribution of Cl™
channels to specific physiological processes. Fi-
nally, the molecular identity of most Cl~ channels
has been for a long time an uncertain and contro-
versial topic. Actually, this uncertainty has often
led to the wrong conclusions about the type of
channels associated with a particular physiological
process or disease.

The readers may refer to previous excellent re-
views that describe the properties of known CI™
channels such as CFTR, proteins of the CIC family,
and ionotropic receptors for GABA and glycine (11,
18, 42, 47, 61). Here, we will discuss Ca®* -activated
Cl™ channels (CaCCs) and their relationship with
the family of recently discovered TMEM16 pro-
teins, also known as anoctamins.

Molecular Basis of CACCs

Electrophysiological studies have identified CaCCs
in many cell types (18, 35). These channels are
activated by increases in cytosolic free Ca®>* con-
centrations due to release from intracellular stores
or influx through plasma membrane channels
(FIGURE 1). The most common characteristics of
CaCCs are I and SCN™ permeabilities larger than
that for chloride, activation by cytosolic free Ca®*
concentrations in the 0.2-1.0 pM range, and mod-
ulation of channel activity by membrane potential
(25, 35). Usually, CaCCs slowly activate when the
membrane is depolarized to positive membrane
potentials and deactivate with comparable kinetics
when the membrane returns to resting conditions
(5,9, 25, 35, 44) (FIGURE 1). However, activation by
membrane potential is markedly dependent on
Ca®". At very low nanomolar Ca®** concentrations,
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depolarization by itself cannot activate the chan-
nel. At high micromolar Ca®>* concentrations, the
channel is almost fully activated at all membrane
potentials.

Several attempts have been made to identify the
proteins forming CaCCs. The first candidate, CLCA,
was a protein isolated from bovine trachea (15).
CLCA proteins have been also called “asthma” chan-
nels because of their upregulation in allergic airway
disease (21). However, subsequent studies demon-
strated that CLCA proteins are cell adhesion mole-
cules anchored to the cell surface or even secreted in
the extracellular space (30). This conclusion is in
agreement with the initial finding of a CLCA protein
as a factor important for attachment of metastatic
melanoma cells to lung endothelium (20).

CLC-3 is another CaCC candidate. However, the
currents evoked by CLC-3 expression lack voltage
dependence and are activated by Ca®*-/calmodu-
lin-dependent phosphorylation (39, 62), whereas
in many cases CaCCs seem to be directly activated
by Ca®* (35) and even inhibited by phoshorylation
(3, 76). CLC-3 has been also found to work as an
electrogenic H*/Cl~ antiporter (50). Similar to
other proteins of the same family, such as CIC-4,
CIC-5, and CIC-7, CIC-3 may be essentially in-
volved in the acidification of intracellular or-
ganelles (34, 42). CIC-3 has been also associated
with the activity of cell swelling-activated Cl™
channels, but CLC-3 knockout mice show normal
Ca**- and swelling-activated Cl~ conductances
(4). Therefore, the relationship of CLC-3 with
CaCCs and other plasma membrane Cl~ channels
is unclear.

Bestrophins, initially discovered as proteins in-
volved in vitelline macular dystrophy (Best’s dis-
ease), represent another candidate for CaCC (59,
72). If compared with “classical” CaCCs, Cl~ cur-
rents associated with bestrophin expression have
different Ca®* affinity, voltage dependence, and
sensitivity to pharmacological inhibitors. Bestro-
phins have been associated with multiple cell func-
tions, such as regulation of voltage-dependent
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Ca** channels (67), bicarbonate transport in intes-
tinal epithelial cells (79), and Cl~ transport in the
endoplasmic reticulum (7). According to this last
finding, bestrophins would be important as a
shunt conductance required to neutralize the elec-
trical charge of Ca®** moving across the endoplas-
mic reticulum membrane. In this way, bestrophins
would affect CaCC activity indirectly by modulat-
ing the shape and amplitude of regulatory Ca*"
signals.

In 2008, three teams of investigators postulated
TMEMI16A as a component of CaCCs (12, 68, 78).
Interestingly, this conclusion was obtained inde-
pendently using different strategies, including
expression cloning and functional genomics. Si-
lencing of TMEM16A gene expression in vitro
and in vivo caused inhibition of endogenous
CaCC activity. On the other hand, heterologous
expression of TMEMI16A in null cell systems
caused the appearance of Ca®*-activated Cl~
channels with the biophysical and pharmacolog-
ical properties expected for a “canonical” CaCC.
For example, the anion permeability sequence
found for TMEM16A (NO;~ >1" >Br > Cl >
F~; Refs. 68, 78) is similar to that reported for
native CaCCs (18, 35). Furthermore, the Cl™ cur-
rents generated by TMEM16A expression (12, 78)
are inhibited by niflumic acid, NPPB, and DIDS
with potency comparable to that reported for
CaCCs (18, 35). Subsequent studies on TMEM16A

S

SOC VDCC CaCC/TMEM16A

T~ (o,

CaM (?) @

IF3 @ CaMK (2)

@ +100 mV

\Y; 60 mV
-100 mV

)

FIGURE 1. Activation of Ca?*-activated ClI~ channels (CaCCs)

CaCCs are activated by cytosolic Ca®" increases deriving from release from intracellu-
lar stores [triggered by stimulation of a G-protein-coupled receptor (GPCR) and phos-
pholipase C-dependent inositol triphosphate generation] or by influx through the
plasma membrane. Ca®" influx may occur through store-operated Ca?* channels
(SOCs) or through voltage-dependent Ca?* channels (VDCCs). Opening of CaCCs
causes a net efflux or influx of CI~ depending on the difference between the Cl~ equi-
librium potential and the resting membrane potential (Ec-V,,). Inset: representative
CaCC currents (top) elicited at different membrane potentials (bottom). Channel activ-
ity increases following membrane depolarization and decreases when the membrane
potential is returned to negative values.
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by other research groups have confirmed its as-
sociation with ClI~ channel activity (46, 56, 66).
This very high level of concordant results sup-
ports the conclusion that TMEM16A forms a
CaCC by itself or in combination with other, yet
to be discovered, proteins.

Structure-Function Relationship
of TMEM16A

The primary structure of the TMEM16A protein has
no similarity with other proteins having known
function and, in particular, with other ion chan-
nels. Examination of TMEMI16A amino acid se-
quence with programs predicting structure and
topology evidences at least eight putative trans-
membrane segments, with both NH, and COOH
termini protruding into the intracellular medium.
Because of the eight transmembrane segments and
the anion selectivity, TMEM16A has been also
named anoctamin-1 (ANO1). Based on mutagene-
sis experiments that result in altered ion selectivity,
it has been proposed that the region between the
fifth and the sixth transmembrane segment forms
areentrant loop that inserts into the plasma mem-
brane and contributes to the formation of the
channel pore (78). Intriguingly, TMEMI6A se-
quence does not contain canonical calcium- or
calmodulin-binding domains. If TMEMI16A di-
rectly binds Ca®*, it may occur through a novel
type of domain. A possible Ca®*-binding region is
a cluster of four contiguous glutamic acid residues
localized in the first intracellular loop. This region
may be similar to the “calcium bowl” of Ca*"-
dependent K* channels (6). However, there may
be multiple calcium binding sites in TMEM16A, as
suggested by the steep relationship between CaCC
activity and free Ca®>" concentration in many stud-
ies (25, 35). Identification of such sites may result
in difficulty since each site may include residues
residing distantly from each other in the primary
sequence. Furthermore, the binding site may be a
combination of amino acid side chains and car-
bonyls of protein backbone. An alternative hypoth-
esis is that the Ca®*-sensing mechanism of CaCCs
is not intrinsic to the TMEM16A protein but is
provided by an ancillary subunit, possibly calmod-
ulin or another Ca®*-binding protein.
Interestingly, there is not a single version of the
TMEMI16A protein (FIGURE 2). Indeed, the mech-
anism of alternative splicing is responsible for the
generation of various TMEM16A isoforms (12, 23).
This process involves the skipping/inclusion of at
least three alternative segments, called b, ¢, and d,
corresponding to exons 6b, 13, and 15, and being
22, 4, and 26 amino acids long, respectively. Anal-
ysis of TMEM16A splicing among different human
organs and tissues showed a variety of patterns.
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Some tissues co-express multiple isoforms having
variable levels of exons 6b or 15 skipping (23). Oth-
ers show a preferential pattern of one isoform only.
Interestingly, tissues appearing to preferentially
skip exon 6b tend to include exon 15 and vice versa.
This coordinated pattern of splicing may suggest
that segments b and d have mutually exclusive
functional roles. In contrast, microexon 13 is al-
ways included, with a small degree of skipping in
brain and skeletal muscle. The NH, terminus of
TMEMI16A includes a region (segment a) that may
be skipped when an alternative promoter is used
(23). The resulting protein lacks the initial 116
amino acids. We found that the transcript lacking
segment a was also devoid of segments b, ¢, and d.
The corresponding isoform, called TMEM16A(0), is
only 840 amino acids long compared with the long-
est one, TMEM16A(abcd), which has 1,008 amino
acid residues (12).

Patch-clamp experiments have revealed that
TMEMI16A alternative splicing has a functional
meaning (FIGURE 2). In particular, inclusion of
segment b reduces the apparent affinity for Ca®>* of
TMEM16A-dependent channels. Accordingly, the
Ca®* sensitivity of isoforms TMEMI16A(abc) and
TMEM16A (ac) differ by nearly fourfold (23). On the
other hand, the splicing of the four amino acids
(Glu-Ala-Val-Lys) corresponding to segment c (exon
13) alters the voltage dependence. Interestingly,
inclusion of segment c¢ occurs after the stretch of
four glutamic residues discussed above as a possi-
ble Ca®*-binding site. Heterologous expression of
TMEM16A(0) variant generates Cl~ currents that
are Ca®* dependent but are unaffected by mem-
brane potential. The physiological relevance of this
isoform is unclear.

Summarizing, alternative splicing appears as an
important mechanism regulating the CaCC chan-
nel properties, such as voltage dependence and
Ca®" sensitivity. Alternative splicing may also ex-
plain the variety of characteristics reported for
CaCCs in different cell types (35).

TMEM16A/CaCC: Role in Epithelia

One of the major sites for CaCC expression and
function is represented by epithelial cells. CaCCs
constitute a route for CI~ secretion across the api-
cal membrane of epithelial cells of the airways,
intestine, and exocrine glands (35, 43). Elevation of
intracellular free Ca®>" concentration, triggered by
paracrine and autocrine mechanisms, leads to
transient CaCC activation. In many epithelial cells,
intracellular Cl™ is accumulated by the coordi-
nated activity of basolateral channels and trans-
porters above the electrochemical equilibrium.
Therefore, activation of CaCCs generates an efflux
of CI” in the apical membrane that is followed by

Na* through the paracellular pathway. The net
secretion of NaCl drives transepithelial water
transport. In the airways, local activation of CaCCs,
through autocrine release of ATP and binding to
purinergic receptors, may be a mechanism to in-
crease water supply and hence mucociliary clearance
(73). CaCCs probably have additional functions.
CaCC-mediated bicarbonate transport may be es-
sential for the expansion of mucins, as described for
CFTR (27). In addition, CaCCs are highly permeable
to SCN™ (thiocyanate). This pseudohalyde is used by
lactoperoxidases on the airways and in the lumen of
salivary and mammary glands to generate hypo-
thiocyanite, a molecule with antimicrobial activity
(28, 41, 55). Interestingly, the other substrate of
lactoperoxidase is hydrogen peroxide, which is
produced by plasma membrane dual oxidases
(DUOX) in a Ca®**-dependent way (24, 57). There-
fore, increases in cytosolic Ca®** may trigger a lo-
calized innate defense mechanism based on CaCC
and DUOX activation.

In agreement with the important role of CaCCs
in epithelial cells, expression of TMEM16A protein
or mRNA has been demonstrated in the airway
surface epithelium and in the acinar cells of pan-
creas, salivary glands, and bronchial submucosal
glands (38, 45, 56, 63, 66, 68, 78). TMEMI16A is also
expressed in the mammary gland and in renal tu-
bules (68, 78). Demonstration of TMEM16A expres-
sion in other types of epithelial cells such as those
of the intestine requires further studies. Indeed,
there are controversial results regarding the con-
tribution of CaCCs to intestinal Cl~ secretion (43).
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FIGURE 2. Regulation of CaCC by alternative splicing of TMEM16A
Predicted topology of TMEM16A protein showing eight putative transmembrane do-
mains with a reentrant loop between the fifth and the sixth domain. The figure also
shows the position and size of the four alternative segments: a, b, ¢, and d. Inclusion/
skipping of segment b (22 amino acid residues) modulates the Ca®" sensitivity of the
TMEM16A ClI~ conductance (y). The Ca?* sensitivity of TMEM16A(abc) is nearly four-

fold lower than that of TMEM16A(ac).
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It has been reported that CaCCs are active only in
nonpolarized intestinal epithelial cells (2) and not
in native epithelium (71). In this case, in polarized
epithelia, Ca®"-based signals would induce Cl~ se-
cretion essentialy through cAMP-activated Cl™
channels, i.e., CFTR (16, 48, 71), if such channels
are activated constitutively or by concomitant
stimuli. Indeed, the intracellular Ca®** increase
should act by activating basolateral K* channels
and therefore increasing the driving force for Cl~
efflux. On the other hand, different studies have
shown separate CFTR and CaCC conductances in
polarized intestinal epithelia (51, 52). Such discrep-
ant results may derive from a dependence of CaCC
expression on unknown regulatory factors. For ex-
ample, the presence of CaCC-dependent Cl~ secre-
tion, stimulated by the NSP4 rotaviral enterotoxin,
was found to depend on the age of mice (54). An-
other important issue to clarify is the subcellular
localization of TMEM16A protein in the various epi-
thelial cells. Indeed, TMEM16A expression would
support Cl~ secretion only if the channels are api-
cally localized.

In vitro and in vivo functional studies have dem-
onstrated that TMEM16A is indeed needed for Ca®*-
dependent Cl™~ secretion. Silencing of TMEM16A by
siRNA has been found to inhibit the Ca®*-dependent
stimulation of Cl~ secretion in polarized cultures of
human bronchial epithelial cells (12) and the fluid
secretion by salivary glands (78). Other data support-
ing the relationship between TMEM16A and CaCCs
originate from knockout mice. These animals show a
decreased Ca**-dependent Cl~ transport in tracheal
and intestinal epithelium, salivary glands, and hepa-
tocytes (56, 65, 66). The results obtained from the
intestine of TMEM16A(—/—) animals suggest that
CaCCs are indeed important for intestinal Cl~ secre-
tion (56). As a consequence of defective Cl~ secretion
in the airways, there is also a defective mucociliary
clearance (56) that may generate accumulation of
mucus (65). Intriguingly, TMEM16A knockout mice
have a very severe phenotype mainly characterized
by incomplete development of tracheal cartilage
rings (63). This defect is probably the cause of early
death of the animals by suffocation. The mechanism
leading to altered cartilage development is unclear
but may be a consequence of a defect in the tracheal
surface epithelium since expression in the cartilage
was not detected (63).

TMEM16A in Smooth Muscle Cells

CaCCs have been repeatedly identified by functional
studies in smooth muscle cells (SMCs), particularly in
blood vessels (32, 33). Their role is considered essen-
tial in the mechanism of signal amplification leading
to cell contraction (35). Indeed, cytosolic free Ca®*
elevation by paracrine mechanisms triggers CaCC
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activation. The resulting Cl ™~ efflux causes membrane
depolarization, opening of voltage-dependent Ca**
channels, and hence further Ca®>" elevation. As in
epithelial cells, the CaCC-dependent depolarization
depends on a relatively high intracellular CI~ con-
centration (14).

The identification of TMEM16A now allows inves-
tigation of the expression and role of CaCCs in dif-
ferent types of SMCs. Immunocytochemistry studies
suggest that TMEM16A protein is not uniformly present
in SMCs. According to these results, TMEM16A is mark-
edly expressed in SMCs of the airways and of some
parts of the reproductive system (i.e., oviduct and epi-
didymis) but not in SMCs of blood vessels (38). How-
ever, recent reports indicate that TMEM16A is indeed
expressed in such cells and that silencing of
TMEMI16A causes inhibition of endogenous Ca®*-
activated Cl~ currents (16, 49). In the gastrointestinal
tract, TMEM16A is strongly expressed in the intersti-
tial cells of Cajal (ICCs), which represent pacemaker
cells controlling the contraction of the smooth mus-
cle layers (31, 38, 40). The importance of TMEM16A
in gastrointestinal motility is demonstrated by stud-
ies on knockout mice (38, 40). These animals are
devoid of slow waves, the rhythmic changes in mem-
brane potential controlling contraction. Slow waves
are also inhibited by niflumic acid, a CaCC inhibitor,
although with different potency in gastric antrum
compared with intestine (40).

It is interesting to note that the mechanism of ICC
depolarization was previously proposed to depend
on a Ca®"-inhibited nonselective cation channel (22),
although some studies indicated a possible role of
Cl” channels (37). The identification of TMEM16A
(ANOL1) and its high expression in ICCs has led to
reconsideration of this issue. In a recent study on ICC
cells identified by cell-specific GFP expression, the
Ca®*-activated Cl~ conductance was indeed found
to mediate the membrane depolarization underlying
slow waves (80).

TMEM16A/CaCCs in Nervous
System and Sensory Receptors

CaCCs also control the excitability of various types of
neurons including olfactory sensory neurons, so-
matosensory neurons, photoreceptors, and spinal
cord neurons (25). The opening of CaCCs generates
membrane potential depolarization or hyperpolar-
ization depending on whether the CI~ equilibrium
potential is more positive or more negative than the
resting potential, respectively.

Somatosensory neurons, whose bodies constitute
the root dorsal ganglia (DRG), transduce different
stimuli such as skin temperature, pain, and touch. A
subpopulation of DRG neurons show CaCC activity,
thus indicating that these channels are involved in
the transduction of specific sensory pathways (25).
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Recently, it has been demonstrated that CaCC cur-
rents in small-size DRG neurons mediate the acute
nociceptive stimulus in reponse to bradykinin (46).
Bradykinin, through B2 receptors and phospholipase
C cascade, triggers intracellular Ca®>* increase and
CaCC activation. The resulting depolarization in-
creases the action potential firing rate. Gene silenc-
ing experiments demonstrated that CaCC activity in
small DRG neurons depends on TMEM16A expres-
sion (46).

CaCCs also play a role in the mechanism of olfac-
tory signal transduction. In the cilia of olfactory sen-
sory neurons, odorous substances trigger cAMP
elevation and hence activation of cyclic nucleotide-
gated cation channels. The corresponding influx of
Na™ and Ca®** opens CaCCs and causes Cl~ efflux.
This event produces an additional membrane depo-
larization that acts as an amplification step (25, 36). It
has been shown that CaCC currents in olfactory neu-
rons are mediated by TMEM16B (alias ANO2), a close
homolog of TMEM16A (36, 60, 69).

TMEM16B has been also identified in the synaptic
terminals of the mouse retina (70). This finding is
consistent with a regulatory role of Ca®*-dependent
CI” conductance on photoreceptor function (25).

Other TMEM16 Proteins

TMEM16A and TMEM16B are members of a protein
family containing another eight members, from
TMEM16C to TMEM16K (26). Al TMEM16 proteins
(anoctamins) have a comparable predicted topology.
The amino acid sequence of TMEMI16A is ~60%
identical to that of TMEMI16B. Not surprisingly,
TMEM16B appears to work as a CaCC. However,
there are some interesting differences. Compared
with TMEM16A, TMEMI16B-dependent channels
have nearly 10-fold smaller unitary conductance,
lower Ca®* sensitivity, and much faster activation
kinetics (58, 69, 78). These differences may guide in
the identification of critical protein domains involved
in channel gating and Cl~ transport.

The overall homology between TMEM16A and
other anoctamins is much lower, with TMEM16F,
G, H, J, and K being only 20-30% identical. How-
ever, specific regions in anoctamins, particularly
in the putative transmembrane domains, show a
much higher level of sequence conservation.
These more distant anoctamins may represent
different types of anion channels or transporters.
TMEMI16F and TMEM16K show high and ubig-
uitous expression in many cells and tissues (12,
64). In contrast, TMEM16C and TMEM16G seem
particularly expressed in the nervous system and in
prostate, respectively (8, 64). Interestingly, TMEM16E/
ANOS5 (also known as GDD]1) is the only anoctamin
found so far to be mutated in human genetic dis-
eases. Indeed, mutations in the TMEMI6E cause

gnathodiaphyseal dysplasia, a dominant autosomic
syndrome associated with fibro-osseous jawbone le-
sions and long-bone bowing (74). More recently, two
recessive diseases, proximal limb-girdle muscular
dystrophy and distal non-dysferlin Miyoshi myopa-
thy, were also found to be caused by TMEM16E mu-
tations (10). The physiological role of TMEMI16E
protein is unknown, but it has been shown to have
an intracellular localization (53). Other anoctamins
may also have an intracellular localization and
function.

It has been reported that expression of many
TMEM16 proteins, including TMEM16A, gener-
ates Cl™ currents that are activated by cell swell-
ing (1). However, the biophysical properties of
the ClI™ channels associated with anoctamin ex-
pression appear different from those of volume-
sensitive Cl~ channels, also known as VSOAC
(75). Therefore, anoctamins and VSOACs may
represent different types of channels involved in
cell volume regulation.

TMEM16 Proteins and Cancer

One of the intriguing characteristics of TMEM16A is
its overexpression in some human cancers such as
gastrointestinal stromal tumors (GISTs) and head
and neck squamous cell carcinomas (13, 77). Be-
cause of this relationship, TMEM16A protein is also
known as DOG1 (discovered on gastrointestinal stro-
mal tumor 1), TAOS2 (tumor amplified and overex-
pressed sequence 2), and ORAOV2 (oral cancer
overexpressed 2). The overexpression of TMEM16A
may imply that it is important for cancer develop-
ment and metastasis. However, other hypotheses are
also possible. For example, TMEM16A upregulation
may be a consequence of amplification of the
genomic region (11q13) containing other genes with
more relevance to cancer such as cyclin D1 and
FADD (29). Alternatively, high TMEM16A expression
may be a feature of the cells from which the tumor
derived. For example, GISTs probably originate from
or have a progenitor in common with ICCs.

Other TMEM16 proteins also have a relationship
with cancer. TMEM16G, also known as NGEP, is par-
ticularly expressed in prostate cancers (8). The pat-
tern of TMEMI6F splicing affects the metastatic
capability of mammary cancers in mouse and is as-
sociated with poor prognosis of human patients with
breast cancer (19).

Concluding Remarks

The identification of TMEM16A/ANO1 as a CaCC
protein will keep investigators in the field busy for
the next several years. Several questions remain un-
resolved, including the structure-function relation-
ship, the interactome, the regulatory mechanisms,
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and the physiological meaning of the different
isoforms.

TMEM16A and other members of the same family

may represent novel drug targets for the treatment of
various human diseases such as cystic fibrosis,
hypertension, gastrointestinal motility disorders,
asthma, and cancer. However, the participation
of CaCCs in a variety of physiological processes
requires the development of tissue-specific phar-
macological modulators. ®
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