












shortened in duration, whereas Src and PI3K sig-
naling is normal (35).

The reduced phosphorylation of Y1175 site is re-
stored by inhibition of expression of PTP1b, an
endoplasmic reticulum-resident PTP that has been
shown to affect activation and trafficking of multi-
ple RTKs but not other PTP that are known to
interact with VEGFR2, including VE-PTP, CD148,
and Shp2. This suggests that VEGFR2 in early en-
dosomes is in close contact with PTP1b and that
prolonged residence in this endosomal compart-
ment leads to a selective reduction in Y1175 phos-
phorylation and VEGF-induced ERK activation
(FIGURE 2). The evidence for the functional sig-
nificance of this VEGFR2 trafficking delay comes
from studies demonstrating that a knockdown of
PTP1b expression in synectin or myosin VI-null
endothelial cells fully restores VEGFR2-depen-
dent ERK activation. Likewise, suppression of
PTP1b activity in vivo restores arteriogenesis in
synectin-null mice (35).

Exactly how VEGFR2 in EEA1-positive endo-
somes interacts with a synectin/myosin VI com-
plex is unclear at the present time. One possibility
is that this is orchestrated by neuropilin-1 since it
can both interact with VEGFR2 and bind synectin.
This hypothesis is supported by two observations.
First, VEGF-A165a, an isoform capable of binding
both VEGFR2 and Nrp1, directs VEGFR2 to the
Rab5/Rab4/Rab11 recycling pathway (presumably
via EEA1), whereas non-Nrp1-binding isoform
VEGF-A165b directs it toward degradation via the
Rab7 pathway (2). Second, Nrp1 targeting of endo-
cytosed VEGFR2 to the Rab5/Rab11 pathway re-
quires the presence of its PDZ binding domain
(50), suggesting a synectin-dependent process.

The balance between endocytosis and exocytosis is
another means of regulating VEGFR2 signaling. Bind-
ing of VEGF to VEGFR2 on the plasma membrane
stimulates trafficking of intracellular VEGFR2 se-
questered in recycling endosomes back to the
plasma membrane (19). In addition, the same
binding event also initiates trafficking of newly
synthesized, Golgi-resident VEGFR2 to the mem-
brane (41). The process of VEGFR2 trafficking

through the Golgi network and, subsequently, to
the membrane is controlled by a Golgi-localized
target membrane-soluble N-ethylmalemide at-
tachment protein receptor (t-SNARE) syntaxin 6. A
reduction in syntaxin-6 levels results in decreased
VEGF-induced endothelial cell proliferation, mi-
gration, and tube formation, whereas in vivo an
inhibitory form of syntaxin 6 reduces VEGF-in-
duced angiogenesis and permeability (41).

Finally, another level of VEGFR2 regulation is
proteolytic cleavage that releases nearly complete
cytoplasmic domain of VEGFR2. The proteolyti-
cally cleaved fragment is able to activate PLC� and
ERK signaling on its own, further demonstrating an
intracellular site of ERK activation by VEGFR2 (5a).

Biological Effects of VEGFR2
Trafficking

We now have a rapidly increasing knowledge of
functional consequences of abnormal VEGFR2 endo-
cytosis and trafficking. Remarkably, every known al-
teration in these processes results in vascular defects
with a high degree of arterial specificity in addition to
angiogenic defects (Table 2).

When VEGFR2 uptake is impaired, as happens in
endothelial cells expressing ephrin-B2 with a mu-
tated PDZ binding site or in ephrin-B2-null cells,
there is a pronounced reduction in the number of
tip cells in the developing retina, whereas in path-
ological settings tumor angiogenesis and growth
are reduced. At the cellular level, there is a de-
crease in the number of filopodia extensions, and
phosphorylation of the VEGFR2 Y1212 site, thought
to be involved in Rac1 activation, is profoundly
reduced (52). Akt-1 activation is also reduced, as
was the phosphorylation of the Y951 site (52) that
may be responsible for activation of this pathway
(49). Similar to VEGFR2, endothelial ephrin-B2 de-
letion also results in marked impairment of
VEGFR3 endocytosis and a compromise of Rac1,
Akt, and Erk signaling (63). It should be noted that,
although there is a tendency to conflate neuropi-
lin-1- and VEGFR2-dependent effects of VEGF sig-
naling, it is not clear that Nrp1 does not, indeed,

Table 2. Functional effects of disruption of VEGF-R2 endocytosis and trafficking

Gene VEGFR2 E and T Role Phenotype

VEGF-A Initiation of active uptake Vegfa�/�: complete failure of vascular development
VEGF-R2 Signaling receptor Vegfr2�/�, Vegfr2Y1175F: complete failure of vascular development
Ephrin-B2 Initiation of endocytosis Ephrinb2ECKO: reduced tip cell number, decreased angiogenesis
Neuropilin-1 Sorting to clathrin pathway Npn1ECKO: reduced arterial branching, absence of small/medium size

arteries
CCM3 Endocytosis and stabilization at/near PM Ccm3ECKO: angiogenic and vascular remodeling defects
Synectin Trafficking of early endosomes Reduced arterial branching and lumen size
Myosin-VI Trafficking of early endosomes Reduced arterial branching and lumen size
Syntaxin 6 Trafficking to lysosomes Reduced VEGF-induced EC migration, proliferation and angiogenesis

ECKO, endothelial-specific knockout; PM, plasma membrane.

REVIEWS

PHYSIOLOGY • Volume 27 • August 2012 • www.physiologyonline.org 219

 by 10.220.32.247 on O
ctober 18, 2017

http://physiologyonline.physiology.org/
D

ow
nloaded from

 

http://physiologyonline.physiology.org/


have VEGFR2-independent VEGF-induced signal-
ing effects. It also is not clear whether defective
neuropilin-1 and VEGFR2 endocytosis are involved
in various vascular phenotypes (10, 15, 35).

Indirect evidence implicates neuropilin-1 in
shuttling VEGFR2 trafficking to the clathrin path-
way (50), and it may direct interactions with Rab11
endosomes during the intracellular sorting step (2).
Endothelial-specific disruption of neuropilin-1 ex-
pression results in marked reduction in arterial
branching and increased vessel diameter. Further-
more, the origin of coronary arteries is frequently
abnormal as is the septation of the ventricular out-
flow tract resulting in persistent truncus arteriosus
(41a). Another defect associated with neuropilin-1
deletion is the persistent association of endothelial
tip cell filopodia with the radial glia in the subven-
tricular zone of the developing hindbrain. This
likely results from the failure of the vascular
sprouts to turn and extend across this region, leav-
ing them blind-ended and forming vascular tufts
(22). Although the molecular details of neuropilin-
1-VEGFR2 interaction remain unclear, the cyto-
plasmic domain of neuropilin-1 appears critical for
spatial separation of arterial and venous circula-
tion in the retina (16).

The next pair of proteins controlling VEGFR2
intracellular trafficking is synectin or myosin VI.
As already discussed, both are involved in traf-
ficking of early VEGFR2 endosomes away from
the PTP-1b-rich cytoplasmic domains. Unlike
knockouts of ephrin-B2 and neuropilin-1, knock-
outs of these genes are not lethal, but both result
in arterial-specific phenotypes characterized by
decreased vascular branching and reduced lu-
men size (10, 35).

Summary

These recent developments have a number of in-
teresting implications regarding VEGFR2 signaling.
First, it appears that ERK activation occurs pre-
dominantly in endosomal compartments (35) and
not on a plasma membrane. This is in agreement
with studies showing the existence of an ERK scaf-
fold complex in endosomes (46, 55). Second, dif-
ferent VEGFR2 phosphorylation sites may be
dephosphorylated by specific PTPs (32, 35). If true,
this would allow considerable fine-tuning of
VEGFR2 signaling output with dephosphorylation
events channeling RTK activation to specific path-
ways. Third, regulation of receptor trafficking after
its endocytosis is another important means of reg-
ulating its activity (13). This additional control
layer may be particularly important in temporal
control of certain signaling outputs.

VEGFR2 membrane localization, internalization,
and trafficking activation regulate its functions in a

specific biological context. In a quiescent EC
monolayer characterized by tight cell-cell junc-
tions, the major role of VEGF signaling is mainte-
nance of the monolayer (prevention of EC
apoptosis) and production of nitric oxide. Both of
these activities are the result of activation of PI3K/
Akt pathway. VEGFR2 endocytosis in this setting is
prevented by several mechanisms, including close
proximity of VE-cadherin-bound DEP1/CD148 (33,
34) and �1-integrin-bound TCPTP (42). Both of
these phosphatases dephosphorylate VEGFR2 and
reduce its endocytosis. This leads to VEGFR2 re-
maining on the plasma membrane from where it is
able to activate PI3K/Akt but not ERK signaling.

In contrast, in settings when endothelial prolif-
eration and migration are required, as occurs, for
example, following injury when the monolayer in-
tegrity is broken and endothelial cells are no longer
contact-inhibited, VEGF stimulation leads to
VEGFR2 internalization into EEA1-containing en-
dosomes. That by itself is not enough to activate
ERK signaling since VEGFR2 in EEA1 endosomes
finds itself in close association with PTP1b that
selectively dephosphorylates the PLC�/ERK path-
way activation site. Trafficking of EEA1� VEGFR2
endosomes, a process that requires synectin/myo-
sin VI interaction, finally allows full activation of
ERK signaling (35).

Once the vascular repair process is complete, the
endothelial cells are once again arranged in a tight
monolayer and a new basement membrane com-
posed of collagen I and IV has formed, engagement
of �1�1 integrin activates TCPTP, whereas co-lo-
calization with VE-cadherin brings DEP1/CD148
once again into the picture. As the result, VEGFR2
internalization and ERK activation are inhibited,
and membrane localization and PI3K/Akt activa-
tion are once again favored. �
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